Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Упростить выражения: \( \left ( x^{1+\frac{1}{2\log _{4}x}}+8^{\frac{1}{3\log _{x^{2}}2}}+1 \right )^{1/2} \)

Решение №17710: ОДЗ: \( 0< x\neq 1 . \left ( x^{1+\frac{1}{2\log _{4}x}}+8^{\frac{1}{3\log _{x^{2}}2}}+1 \right )^{1/2}=\left ( x*x^{\frac{1}{\log _{2}x}}+2^{\frac{1}{\log _{x^{2}}2}}+1 \right )^{\frac{1}{2}}=\left ( x*x^{\log _{2}x}+2^{\log _{2}x^{2}}+1 \right )^{\frac{1}{2}}=\left ( 2x+x^{2}+1 \right )^{\frac{1}{2}}=\sqrt{\left ( x+1 \right )^{2}}=\left | x+1 \right |=x+1 \) ( с учетом ОДЗ: 0< x\neq 1) \)

Ответ: \( x+1 )\, где \( 0< x\neq 1 )\

Решить уравнения: \( \log _{\sqrt{x}}a*\log _{a^{2}}\frac{a^{2}}{2a-x}=1 \)

Решение №17711: ОДЗ: \( \left\{\begin{matrix} 0< a\neq 1, & & & \\ x\neq 2a, & & & \\ 0< x\neq 1 & & & \end{matrix}\right. \) Перейдем к основанию \( a \) Имеем \( \frac{\log _{a}a}{\log _{a}\sqrt{x}}*\frac{\log _{a}\frac{a^{2}}{2a-x}}{\log _{a}a^{2}}=1 \Leftrightarrow \log _{a}\left ( 2a-x \right )+\log _{a}x=2 \Leftrightarrow \log _{a}x\left ( 2a-x \right )=2, x\left ( 2a-x \right )=a^{2}, x^{2}-2ax+a^{2}=0, \left ( x-a \right )^{2}=0 \), откуда \( x=a \)

Ответ: \( x=a )\, где \( 0< a\neq 1 )\

Решить уравнения: \( \log _{a}y+\log _{a}\left ( y+5 \right )+\log _{a}0.02=0 \)

Решение №17712: ОДЗ: \( \left\{\begin{matrix} y> 0, & \\ y+5> 0 & \\ 0< a\neq 1 & \end{matrix}\right.\left\{\begin{matrix} y> 0 & \\ 0< a\neq 1 & \end{matrix}\right. \) Имеем \( log_{a}\left ( y\left ( y+5 \right )*0.02 \right )=0 ,0.02y^{2}+0.1y=1 , 0.02y^{2}+0.1y-1=0 \), откуда \( y_{1}=5; y_{2}=-10 \) не подходит по ОДЗ.

Ответ: \( y=5 0< a\neq 1)\

Постройте треугольник \(АВС\) по стороне \(АВ\), углу \(А\) и сумме сторон \(АС + СВ\) (см. рис. ниже а).

Решение №17713: Продолжим сторону \(АС\) треугольника \(АВС\) на отрезок \(CD\), равный стороне \(ВС\) (рис. 51, б). В треугольнике \(ABD\) известны стороны \(АВ\) и \(АD = АС + СВ\) и угол А между ними, поэтому его можно построить. Серединный перпендикуляр к стороне \(BD\) пересекает сторону \(AD\) в искомой точке \(С\).

Ответ: NaN

Постройте прямоугольный треугольник по гипотенузе и катету (см. рис. ниже, а). Гипотенуза

Решение №17714: Сначала построим окружность, диаметром которой служит данная гипотенуза \(АВ\), а затем построим окружность с центром \(А\), радиус которой равен данному катету. Точки \(С_{1}\) и \(С_{2}\), в которых пересекаются построенные окружности (см. рис. ниже, б), являются вершинами искомых треугольников \(АВС_{1}\) и \(АВС_{2}\)

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

На сторонах \(АВ\) и \(ВС\) квадрата \(ABCD\) отмечены точки \(Р\) и \(Q\) так, что \(ВР = BQ\), из точки \(В\) проведён перпендикуляр \(ВН\) к прямой \(СР\). Докажите, что угол \(DHQ\) прямой (рис. 50).

Решение №17715: Пусть прямая \(ВН\) пересекает прямую \(АD\) в точке \(F\) (см. рис. ниже). Прямоугольные треугольники \(АВЕ\) и \(ВСР\) равны по катету и острому углу. Поэтому \(AF = ВР = BQ\). Следовательно, \(CDFQ\) прямоугольник. Все вершины этого прямоугольника лежат на окружности с диаметром \(FС\); на этой же окружности лежит точка \(Н\). Отрезок \(DQ \)также является диаметром этой окружности, поэтому угол \(DHQ\) прямой.

Ответ: NaN

Четыре точки \(А\), \(В\), \(С\) и \(D\) таковы, что отрезки \(AB\), \(ВС\), \(СD\) и \(DA\) равны (см. рис. ниже). Докажите, что \(AC\perp BD\).

Решение №17716: Пусть точка \(О\) — середина отрезка \(АС\). Тогда \(AC\perp BO\) и \(AC\perp OD\).

Ответ: NaN

На одной стороне угла с вершиной \(О\) отмечены точки \(А\) и \(С\), на другой точки \(В\) и \(D\), отрезки \(AD\) и \(ВС\) пересекаются в точке \(Е\) (см. рис. ниже). Докажите, что если \(АС = BD\) и \(ОА=ОВ\), то луч \(ОЕ\) является биссектрисой угла \(АОВ\).

Решение №17717: Треугольники \(OAD\) и \(ОВС\) равны по двум сторонам \((ОА = ОВ и OD = ОВ + BD =ОА + АС = ОС)\) и углу между ними. Треугольники \(ЕАС\) и \(EBD\) равны по стороне \((АС = BD)\) и прилежащим к ней углам (углы \(С\) и \(D\) являются равными углами треугольников \(ОАD\) и \(ОВС\), а углы \(А\) и \(В\) являются смежными с равными углами этих треугольников). Треугольники \(ОЕС\) и \(OED\) равны по трём сторонам (сторона \(ОЕ\) у них общая, равенство сторон \(ОС\) и \(OD\) следует непосредственно из условия, равенство сторон \(ЕС\) и \(ED\) следует из равенства треугольников \(ЕАС\) и \(EBD\)). Из равенства треугольников \(ОЕС\) и \(OED\) следует равенство углов \(СОЕ\) и \(DOE\).

Ответ: NaN

Внутри треугольника \(АВС\) отмечена точка \(О\) так, что луч \(ВО\) делит пополам углы \(АВС\) и \(АОС\) (см. рис. ниже). Докажите, что этот треугольник равнобедренный.

Решение №17718: Докажите сначала, что треугольники \(ОВА\) и \(ОВС\) равны по стороне и прилежащим к ней углам.

Ответ: NaN

У звезды, изображённой на рисунке, равны углы с вершинами \(А\) и \(В\), углы с вершинами \(С\) и \(Е\), а также \(АС = ВЕ\). Докажите, что \(АD=ВD\).

Решение №17719: Пусть \(F\) и \(G\) — точки пересечения отрезка \(СЕ\) с отрезками \(DB\) и \(DA\) (см. рис. ниже). Сначала докажите, что \(\Delta ACG = \Delta BEF\) (по стороне и прилежащим к ней углам), а затем докажите, что \(DF = DG\).

Ответ: NaN