Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Окружность с центром \(O\) касается в точке \(A\) внутренним образом большей окружности. Из точки \(B\) большей окружности, диаметрально противоположной точке \(A\), проведена хорда \(BC\) большей окружности, касающаяся меньшей окружности в точке \(M\). Докажите, что \( OM \parallel AC \).

Решение №17340: Поскольку касательная \(BM\) к меньшей окружности перпендикулярна радиусу, проведённому в точку касания, то \(\angle OMB = 90^{\circ}\), а т.к. точка \(C\) лежит на окружности с диаметром \(AB\), то \(\angle ACB = 90^{\circ}\). Следовательно, \( OM \parallel AC\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Окружности с центрами \(O_{1}\) и \(O_{2}\) касаются внешним образом в точке \(K\). Некоторая прямая касается этих окружностей в различных точках \(A\) и \(B\) и пересекает их общую касательную, проходящую через точку \(K\), в точке \(M\). Докажите, что \( \angle O_{1} MO_{2}= \angle AKB = 90 ^{\circ} \)

Решение №17341: \(O_{1}MO_{2}\) — угол между биссектрисами смежных углов, поэтому \(\angle O_{1}MO_{2} = 90^{\circ}\) (рис. 167). Поскольку \(MA = MK = MB\), точка \(K\) лежит на окружности с диаметром \(AB\), следовательно, \( \angle AKB = 90^{\circ}\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

В острый угол, равный \( 60^{\circ} \), вписаны две окружности, касающиеся друг друга внешним образом. Радиус меньшей окружности равен \(r\). Найдите радиус большей окружности.

Решение №17342: Пусть \(R\) — радиус большей окружности (см. рис. ниже). Опустим перпендикуляр из центра меньшей окружности на радиус большей окружности, проведенный в точку касания с одной из сторон данного угла. Получим прямоугольный треугольник с гипотенузой \(R + r\), катетом \(R − r\) и острым углом, равным \(30^{\circ}\), противолежащим этому катету. Тогда\(R + r = 2(R − r)\). Отсюда находим, что \(R = 3r\).

Ответ: 3r

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Две окружности касаются внутренним образом. Известно, что два радиуса большей окружности, угол между которыми равен \( 60^{\circ}\), касаются меньшей окружности. Найдите отношение радиусов окружностей.

Решение №17343: Пусть окружности с центрами \(O\)‍ и \(O_{1}‍\) и радиусами \(R\)‍ и \(r‍ (R > r)\)‍ соответственно касаются внутренним образом в точке\( A\),‍ а радиусы \(OB\)‍ и \(OC‍\) большей окружности касаются меньшей соответственно в точках \(M\)‍ и \(N\),‍ причём \(\angle BOC = 60‍^{\circ}\)∘.‍ Поскольку центр окружности, вписанной в угол, лежит на биссектрисе этого угла, \(\angle AOB = 30^{\circ}\),‍ а так как линия центров двух касающихся окружностей проходит через точку их касания, то \(OO‍_{1} = OA − O‍_{1}A = R − r\).‍ Из прямоугольного треугольника OO‍_{1}M‍ находим, что \(OO‍_{1}= 2O‍_{1}M\), или \(R − r = 2r\),‍ откуда ‍\( \frac{r}{R}=\frac{1}{3} \) ‍

Ответ: \( \frac{1}{3} \)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Две окружности касаются в точке \(A\). Прямая, проходящая через точку \(A\), пересекает эти окружности вторично в точках \(B\) и \(C\) соответственно. Докажите, что касательные, проведенные к этим окружностям в точках \(B\) и \(C\), параллельны.

Решение №17344: Пусть \(O_{1}\) и \(O_{1}\) — центры окружностей (см. рис. ниже). Тогда точки \(O_{1} , O_{2}\) и\( A\) лежат на одной прямой. Треугольники \(O_{1} AB\) и \(O_{2} AC\) — равнобедренные, поэтому \(\angle ABO_{1} = \angle BAO_{1} = \angle CAO_{2} = \angle ACO_{2}\), значит, прямая \(O_{1}B\) параллельна прямой \(CO_{2}\). Следовательно, параллельны и перпендикулярные к ним касательные.

Ответ: NaN

Верно ли утверждение предыдущей задачи для четырехугольника, в который можно вписать окружность?

Пока решения данной задачи,увы,нет...

Ответ: Нет.

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

В четырехугольнике \(MNPQ\) расположены две непересекающиеся окружности так, что одна из них касается сторон \(MN, NP\) и \(PQ\), а другая — сторон \(MN, MQ\) и \(PQ\). Точки \(B\) и \(A\) лежат соответственно на сторонах \(MN\) и \(PQ\), причем отрезок \(AB\) касается обеих окружностей. Найдите сторону \(MQ\), если \(NP = b\) и периметр четырехугольника \(BAQM\) больше периметра четырехугольника \(ABNP\) на \( 2p \).

Решение №17346: Поскольку в четырехугольники \(ABMQ\) и \(ABNP\) вписаны окружности (см. рис. ниже), \( MQ+AB=\frac{1}{2}P_{1} \) и \( AB+NP=\frac{1}{2}P_{2} \) \( P_{1} \) и \( P_{2} \) — периметры этих четырехугольников). Поэтому \( MQ-NP=\frac{1}{2}\left ( P_{1}-P_{2} \right )=p \) Отсюда находим, что \( MQ = NP + p = b + p\).

Ответ: b+p

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 3

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

На сторонах \(BC, CA\) и \(AB\) треугольника \(ABC\) взяты соответственно точки \(A_{1}, B_{1} \) и \(C_{1}\), причем \( AC_{1} = AB_{1}, BA_{1} = BC_{1}\) и \(CA_{1} = CB_{1}\). Докажите, что \(A_{1}, B_{1} \) и \(C_{1}\) — точки касания вписанной окружности со сторонами треугольника.

Решение №17347: Обозначим \(AC_{1} = AB_{1} = x, BA_{1} = BC_{1} = y, CA_{1} = CB_{1} = z, AB = c, AC = b, BC = a\) (рис. 172). Тогда \( x + z = b, x + y = c, z + y = a\). Из полученной системы уравнений находим, что \(AB_{1} = x = \frac{1}{2}\left ( b+c-a \right )=p-a \) , т.е. точка \(B_{1}\) совпадает с точкой касания вписанной окружности со стороной \(AC\). Аналогично для точек \(A_{1}\) и \(C_{1}\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 3

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Суммы противоположных сторон выпуклого четырехугольника равны между собой. Докажите, что все стороны четырехугольника касаются некоторой окружности.

Решение №17348: Первый способ. Пусть \(AB + CD = BC + AD\) и прямые \(AB\) и \(CD\) пересекаются в точке \(M\). Впишем окружность в треугольник \(AMB\). Пусть она полностью содержится в четырехугольнике \(ABCD\) (см. рис. ниже,а). Докажем, что она касается \(BC\). Если это не так, то проведем через точку \(B\) касательную к окружности, пересекающую \(CD\) в точке \(C_{1}\). Тогда \(AB + CD = BC + AD и AB + C_{1}D = BC_{1} + AD\). Вычитая почленно эти равенства, получим \(CC_{1} + BC_{1} = BC\), что невозможно. Аналогично рассматриваются остальные случаи. Второй способ. Пусть \(AB + CD = BC + AD − AD = BC − CD\). Рассмотрим случай, когда \( AB> AD \)(см. рис. ниже,б). Тогда \( BC > CD\). На отрезке \(AB\) возьмем такую точку \(T\), чтобы \( AT = AD\), а на отрезке \(BC\) — такую точку \(S\), чтобы \(CS = CD\). Тогда треугольники \(TBS, ADT\) и \(CDS\) равнобедренные. Биссектрисы их углов при вершинах \( B, A\) и \(C\) являются серединными перпендикулярами к отрезкам \(TS, DT\) и \(DS\) соответственно, т.е. серединными перпендикулярами к сторонам треугольника \(DTS\). Поэтому биссектрисы углов \(B, A\) и \(C\) пересекаются в одной точке — центре описанной окружности треугольника \(DTS\). Эта точка равноудалена от всех сторон четырехугольника \(ABCD\). Следовательно, она является центром вписанной окружности четырехугольника \(ABCD\). Аналогично для \(AB < AD\). Если же \(AB = AD\), то утверждение очевидно.

Ответ: NaN

Докажите, что катет прямоугольного треугольника меньше гипотенузы.

Решение №17349: Поскольку гипотенуза лежит против угла, равного \(90^{\circ}\) (т.е. против наибольшего угла треугольника), то она больше каждой из остальных сторон треугольника.

Ответ: NaN