Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Решить уравнения: \( 3^{\log _{3}^{2}x}+x^{\log _{3}x}=162 \)

Решение №15843: ОДЗ: \( 0< x\neq 1 \) Перепишем уравнение в виде \( \left ( 3^{\log _{3}} \right )^{\log _{3}}+x^{\log _{3}}=162\Leftrightarrow x^{\log _{3}}+x^{\log _{3}}=162\Leftrightarrow x^{\log _{3}}=81\Leftrightarrow \log _{3}^{2}x=4 \) Тогда \( \left ( \log _{3}x \right )_{1}=-2 \), или \( \left ( \log _{3}x \right )_{2}=2 \), откуда \( x_{1}=\frac{1}{9}, x_{2}=9 \)

Ответ: \( \frac{1}{9}; 9 )\

Решить уравнения: \( \left | \log _{\sqrt{3}x}-2 \right |-\left | \log _{3}x-2 \right |=2 \)

Решение №15844: ОДЗ: \( x> 0 \) Перейдем к основанию 3. Тогда \( \left | 2\log _{3}x-2 \right |-\left | \log _{3}x-2 \right |=2 \) Раскрывая модули получим три случая: \( \left\{\begin{matrix} \log _{3}x< 1, & & \\ -2\log _{3}x+2+\log _{3}x-2=2 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} \log _{3}x< 1, & & \\ \log _{3}x=-2 & & \end{matrix}\right. \Rightarrow x_{1}=3^{-2}=\frac{1}{9}; \left\{\begin{matrix} 1\leq \log _{3}x< 2, & & \\ 2\log _{3}x-2+\log _{3}x+2=2 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 1\leq \log _{3}x< 2, & & \\ \log _{3}x=2 & & \end{matrix}\right. \log _{3}x=2 \), не подходит так как \( \log _{3}x< 2 . \left\{\begin{matrix} \log _{3}x\geq 2, & & \\ 2\log _{3}x-2-\log _{3}x+2=2 & & \end{matrix}\right. \left\{\begin{matrix} \log _{3}x\geq 2, & & \\ \log _{3}x=2 & & \end{matrix}\right. \Rightarrow x_{2}=3^{2}=9 \)

Ответ: \( \frac{1}{9}; 9 )\

Решить уравнения: \( \left ( 3\log_{a}x-2 \right \)log_{x}^{2}a=\log_{\sqrt{a}}x-3 \left ( a> 0, a\neq 1 \right ) \)

Решение №15845: ОДЗ: \( \left\{\begin{matrix} 0< a\neq 1, & & \\ 0< x\neq 1. & & \end{matrix}\right. \) Перейдем к основанию \( a \)Получаем \( \frac{3\log_{a}x-2}{\log_{a}^{2}x}=2\log_{a}x-3 \Leftrightarrow 2\log_{a}^{3}x-3\log_{a}^{2}x-3\log_{a}x+2=0 \), т.к. \( \log_{a}x\neq 0 \) Далее имеем \( 2\left ( \log_{a}^{3}x \right )-3\log_{a}x\left ( \log_{a}x+1 \right )=0 \Leftrightarrow 2\left ( \log_{a}x+1 \right \)left ( \log_{a}^{2}x-\log_{a}x+1 \right )-3\log_{a}x\left ( \log_{a}x+1 \right )=0 \Leftrightarrow \left ( \log_{a}x+1 \right \)left ( 2\log_{a}^{2}x-5\log_{a}x+2 \right )=0 \), откуда \( \log_{a}x+1=0 \), или \( 2\log_{a}^{2}x-5\log_{a}x+2=0 \) Из первого уравнения \( \log_{a}x=-1, x_{1}=\frac{1}{a} \) Из второго уравнения \( \log_{a}x=\frac{1}{2} \), или \( \log_{a}x=2 \), откуда \( x_{2}=\sqrt{a}, x_{3}=a^{2} \)

Ответ: \( \frac{1}{a}; \sqrt{a}; a^{2} )\

Если \( \log _{a}27=b \), то чему равен \( \log _{\sqrt{3}}\sqrt[6]{a}? \)

Решение №15846: \( \log _{\sqrt{3}}\sqrt[6]{a}=\frac{1}{6}*2\log _{3}a=\frac{1}{3\log _{a}3}= \frac{1}{\log _{a}27} = \frac{1}{b} \)

Ответ: \( \frac{1}{b} )\

Решить системы уравнений: \( \left\{\begin{matrix} \log _{xy}\left ( x-y \right )=1 & & \\ \log _{xy}\left ( x+y \right )=0 & & \end{matrix}\right. \)

Решение №15847: ОДЗ: \( \left\{\begin{matrix} x-y> 0 & & & \\ x+y> 0 & & & \\ 0< xy\neq 1 & & & \end{matrix}\right. \) Имеем \( \left\{\begin{matrix} x-y=xy & & \\ x+y=1 & & \end{matrix}\right. \Rightarrow y=1-x, x-\left ( 1-x \right )-x\left ( 1-x \right )=0, x^{2}+x-1=0 \), откуда \( x_{1}=\frac{-1-\sqrt{5}}{2}, x_{2}=\frac{-1+\sqrt{5}}{2}, y_{1}=\frac{3+\sqrt{5}}{2}, y_{2}=\frac{3-\sqrt{5}}{2} \) Тогда с учетом ОДЗ имеем \( x=\frac{-1+\sqrt{5}}{2}, y=\frac{3-\sqrt{5}}{2} \)

Ответ: \( \frac{-1+\sqrt{5}}{2}; \frac{3-\sqrt{5}}{2} )\

Решить уравнения: \( \log _{2}3+2\log _{4}x=x^{\frac{\log _{9}16}{\log _{3}x}} \)

Решение №15848: ОДЗ: \( 0< x\neq 1 \) Из условия имеем \( \log _{2}3+\log _{2}x=x^{\frac{\log _{3}4}{\log _{3}x}} \Leftrightarrow \log _{2}3+\log _{2}x=x^{\log _{x}4} \Rightarrow \log _{2}3+\log _{2}x=4, \log _{2}3x=4 \), откуда \( 3x=16, x=\frac{16}{3} \)

Ответ: \( \frac{16}{3} )\

Решить уравнения: \( 0.1\log _{2}^{4}\left ( x-4 \right )-1.3\log _{2}^{2}\left ( x-4 \right )+3.6=0 \)

Решение №15849: ОДЗ: \( x-4> 0, x> 4 \) Решая это уравнение как биквадратное относительно \( \log _{2}\left ( x-4 \right ) \), имеем \( \left ( \log _{2}\left ( x-4 \right ) \right )_{1}=-2; \left ( \log _{2}\left ( x-4 \right ) \right )_{2}=2; \left ( \log _{2}\left ( x-4 \right ) \right )_{3}=-3; \left ( \log _{2}\left ( x-4 \right ) \right )_{4}=3 \), откуда \( x_{1}=\frac{17}{4}, x_{2}=8, x_{3}=\frac{33}{8}, x_{4}=12 \)

Ответ: \( \frac{17}{4}, \frac{33}{8}, 8, 12 )\

Найти \( \log _{30}8 \), если известно, что \( \lg 5=a, \lg _{3}=b \)

Решение №15850: \( \log _{30}8=\frac{\log _{2}8}{\log _{2}30}=\frac{3}{\log _{2}\left ( 2*5*3 \right )}=\frac{3}{1+\log _{2}5+\log _{2}3} . \lg _{5}=\frac{\log _{2}5}{\log _{2}10}=\frac{\log _{2}5}{\log _{2}\left ( 2*5 \right )}=\frac{\log _{2}5}{1+\log _{2}5}=a; \log _{2}5=\frac{a}{1-a}. \lg _{3}=\frac{\log _{2}5}{\log _{2}10}=\frac{\log _{2}3}{\log _{2}\left ( 2*5 \right )}=\frac{\log _{2}3}{1+\log _{2}5}=\frac{\log _{2}3}{1+\frac{1}{1-a}}=\frac{\left (1-a \right \)log _{2}3}{1}=b; \log _{2}3=\frac{b}{1-a} \) Таким образом, \( \log _{30}8=\frac{3}{1+\frac{a}{1-a}+\frac{b}{1-a}}=\frac{3\left ( 1-a \right )}{1+b} \)

Ответ: \( \frac{3\left ( 1-a \right )}{1+b} )\

Решить уравнения: \( 5^{-2\log _{0.04}\left ( 3-4x^{2} \right )}+1.5\log _{1/8}4^{x}=0 \)

Решение №15851: ОДЗ: \( 3-4x^{2}> 0 \Leftrightarrow -\frac{\sqrt{3}}{2}< x< \frac{\sqrt{3}}{2} \) Из условия \( 5^{\log _{5}\left ( 3-4x^{2} \right )}+1.5x\log _{2^{-3}}2^{2}=0 \Leftrightarrow 3-4x^{2}-x=0 \Leftrightarrow 4x^{2}+x-3=0 \), откуда \( x_{1}=-1, x_{2}=\frac{3}{4}; x_{1}=-1 \) не подходит по ОДЗ.

Ответ: \( \frac{3}{4} )

Решить уравнения: \( 2^{x+\sqrt{x^{2}-4}}-5*\left ( \sqrt{2} \right )^{x-2+\sqrt{x^{2}-4}}-6=0 \)

Решение №15852: ОДЗ: \( x^{2}-4\geq 0\Leftrightarrow x\epsilon \left ( -\infty ; -2 \right ]\cup \left [ 2; \infty \right ) \) Запишем уравнение в виде \( 2^{x+\sqrt{x^{2}-4}}-\frac{5}{2}*2^{\frac{x+\sqrt{x^{2}-4}}{2}}-6=0 \) Решая его как квадратное относительно \( 2^{\frac{x+\sqrt{x^{2}-4}}{2}} \), имеем \( 2^{\frac{x+\sqrt{x^{2}-4}}{2}}=-\frac{3}{2} \) (нет решений), или \( 2^{\frac{x+\sqrt{x^{2}-4}}{2}}=2^{2} \Rightarrow \frac{x+\sqrt{x^{2}-4}}{2}=2, \sqrt{x^{2}-4}=4-x \Leftrightarrow \left\{\begin{matrix} x^{2}-4=16-8x+x^{2}, & & \\ 4-x\geq 0, & & \end{matrix}\right. \), откуда \( x=\frac{5}{2} \)

Ответ: \( \frac{5}{2} )\