Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Одна и та же резина на передних колесах автомобиля выходит из строя через 24000 км пробега, а задних - через 36000 км. Каково максимальное расстояние, которое автомобиль может пройти на этой резине, если передние и задние колеса можно менять местами?

Пока решения данной задачи,увы,нет...

Ответ: 28800

Точка \(M\) лежит на прямой \(y=1-x\), а точка \(N\) - на параболе \(y=x^{2}-5x+6\). Чему равно наименьшее значение длины отрезка \(MN\)? Ответ умножить на \(\frac{1}{\sqrt{2}}\)

Пока решения данной задачи,увы,нет...

Ответ: 0.5

Точка \(А\) лежит на графике функции \(y=\frac{1}{8}(x^{2}-12x)\), а точка \(B\) - на кривой \(x^{2}+y^{2}-18x-12y+97=0\). Чему равно наименьшее значение длины отрезка \(АB\)?

Пока решения данной задачи,увы,нет...

Ответ: \frac{\sqrt{5}}{2}

На координатной плоскости заданы точки \(M(3;0)\) и \(N(5;2)\). При каких значениях \(a\) точка \(M\) среди всех точек отрезка \([M,N]\) является ближайшей к графику функции \(y=ax^{2}\)?

Пока решения данной задачи,увы,нет...

Ответ: (-\infty ;0]\cup \left [ \frac{1}{4};+\infty \right )

К графику функции \(y=\frac{1}{x^{2}}\) в точке, абсцисса \(\alpha \) которой принадлежит отрезку \([5;9]\) проведена касательная. При каком значении \(\alpha \) площадь \(S\) треугольника, ограниченного этой касательной, осью абсцисс и прямой \( x=4\), является наибольшей?

Пока решения данной задачи,увы,нет...

Ответ: 8

На координатной плоскости рассматривается треугольник \(ABC\), у которого вершина \(A\) совпадает с началом координат, вершина \(B\) лежит на параболе \(y=3x^{2}-10x+2\), а вершина \(С\) - на параболе \(y=-2x^{2}+5x-10\). При этом сторона \(BC\) треугольника параллельна оси ординат, а абсцисса вершины \(B\) принадлежит отрезку \(\left [ \frac{3}{5};\frac{3}{2} \right ]\). Какое значение должна иметь абсцисса вершины \(B\), чтобы площадь треугольника \(ABC\) была наибольшей?

Пока решения данной задачи,увы,нет...

Ответ: 0.6

Определите, является ли последовательность ограниченной сверху, ограниченной снизу, ограниченной: \(x^{n}=\frac{2n^{2}-1}{n+1} \)

Решение №13638: \( x^{n}=\frac{2n^{2}-1}{n+1}=2n-2+\frac{1}{n+1}\). Покажем, что последовательность \(\left \{ x_{n} \right \} \)не ограничена сверху, т.е.\( \forall M> 0 \exists n_{0}\in N: \forall n\geqslant n_{0} 2n-2+\frac{1}{n+1}> M\). Действительно, возьмем произвольное \(M> 0\). Тогда неравенство \(2n-2> M\) влечет за собой \(x_{n}> M\). Значит, в качестве \(n_{0}\) можно взять \(n_{0}=\left [ \frac{M+2}{2} \right ] \forall n\in N x_{n}> 0\), откуда следует, что последовательность ограничена снизу.

Ответ: NaN

Определите, является ли последовательность ограниченной сверху, ограниченной снизу, ограниченной:\( x_{n}=\sin n \)

Решение №13639: \( \left | \sin n \right |\leqslant 1\), поэтому последовательность \(\left \{ x_{n} \right \}\) ограниченная.

Ответ: NaN

Определите, является ли последовательность ограниченной сверху, ограниченной снизу, ограниченной: \(x_{n}=\frac{3n+1}{n+2} \)

Решение №13640: Представим общий член последовательности в виде \(x_{n}=3-\frac{5}{n+2}\). При \(x\geqslant 1\) функция \(f\left ( x \right )=3-\frac{5}{x+2} \) возрастает, множество ее значений \(E\left ( f \right )=\left [ \frac{4}{3}; 3 \right )\). Таким образом, последовательность \(\left \{ x_{n} \right \}\) ограниченная.

Ответ: NaN

Определите, является ли последовательность ограниченной сверху, ограниченной снизу, ограниченной: \(x_{n}=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{2}} \)

Решение №13642: Так как \(\forall n\in N 1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}} \geqslant \frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}=\frac{n}{\sqrt{n}}=\sqrt{n}\), а последовательность с общим членом \(y_{n}=\sqrt{n}\) не ограничена сверху, то последовательность \(\left \{ x_{n} \right \}\) не ограничена сверху. Понятно, что \(\forall n\in N x_{1}< x_{n}\) , а значит, последовательность \(\left \{ x_{n} \right \} \)ограничена снизу.

Ответ: NaN