Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Решить уравнения: \( \lg ^{2}\left ( 100x \right )+\lg ^{2}\left ( 10x \right )=14+\lg \frac{1}{x} \)

Решение №17690: ОДЗ: \( x> 0 \) Логарифмируя, имеем \( \left ( \lg 100+\lg x \right )^{2}+\left ( \lg 10+\lg x \right )^{2}=14-\lg x, 2\lg x+7\lg x-9=0 \) Решая это уравнение как квадратное относительно \( \lg x \), получаем \( \left ( \lg x \right )_{1}=-\frac{9}{2} \), или \( \left ( \lg x \right )_{2}=1 \), откуда \( x_{1}=10^{-\frac{9}{2}}, x_{2}=10 \)

Ответ: \( 10^{-\frac{9}{2}}; 10 )\

Решить уравнения: \( x^{\frac{\lg x+5}{3}}=10^{5+\lg x} \)

Решение №17691: ОДЗ: \( 0< x\neq 1 \) Логарифмируя обе части уравнения по основанию 10, имеем \( \lg x^{\frac{\lg x+5}{3}}=\lg 10^{5+\lg x}, \frac{\lg x+5}{3}\lg x=\left ( 5+\lg x \right \)lg 10, \lg ^{2}x+2\lg x-15=0 \) Решая это уравнение как квадратное относительно \( \lg x \), получаем \( \left (\lg x \right )_{1}=-5 \), или \( \left (\lg x \right )_{2}=3 \), откуда \( x_{1}=10^{-5}, x_{2}=1000 \)

Ответ: \( 10^{-5}; 10^{3} )\

Решить уравнения: \( 2\lg x^{2}-\left ( \lg \left ( -x \right ) \right )^{2}=4 \)

Решение №17692: ОДЗ: \( x< 0 \) Учитывая, что \( x< 0 \) имеем \( 4\lg \left ( -x \right )-\lg ^{2}\left ( -x \right )-4=0\Leftrightarrow \lg ^{2}\left ( -x \right )-4\lg \left ( -x \right )+4=0, \left ( \lg \left ( -x \right )-2 \right )^{2}=0 \), откуда \( \lg \left ( -x \right )=2, x=-100 \)

Ответ: \( -100 )\

Упростить выражения: \( \left ( \left ( \log _{b}^{4}a+\log _{a}^{4}b+2 \right )^{1/2}+2 \right )^{1/2}-\log _{b}a-\log _{a}b \)

Решение №17693: \(\left ( \left ( \log _{b}^{4}a+\log _{a}^{4}b+2 \right )^{1/2}+2 \right )^{1/2}-\log _{b}a-\log _{a}b=\left ( \left ( \log _{b}^{4}a+\frac{1}{\log _{b}^{4}a}+2 \right )^{1/2}+2 \right )^{1/2}-\log _{b}a-\frac{1}{\log _{b}a}=\sqrt{\sqrt{\frac{\log _{b}^{8}a+2\log _{b}^{4}a+1}{\log _{b}^{4}a}}+2}-\frac{\log _{b}^{2}a+1}{\log _{b}a}=\sqrt{\sqrt{\left ( \frac{\log _{b}^{4}a+1}{\log _{b}^{2}a} \right )^{2}}+2}-\frac{\log _{b}^{2}a+1}{\log _{b}a}=\sqrt{\frac{\log _{b}^{4}a+1}{\log _{b}^{2}a}+2}-\frac{\log _{b}^{2}a+1}{\log _{b}a}=\sqrt{\frac{\log _{b}^{4}a+2\log _{b}^{2}a+1}{\log _{b}^{2}a}}-\frac{\log _{b}^{2}a+1}{\log _{b}^a}=\sqrt{\left ( \frac{\log _{b}^{2}a+1}{\log _{b}^a} \right )^{2}}-\frac{\log _{b}^{2}a+1}{\log _{b}a}=\frac{\log _{b}^{2}a+1}{\left | \log _{b}a \right |}-\frac{\log _{b}^{2}a+1}{\log _{b}a} \) Таким образом, получаем два случая: \( \left\{\begin{matrix} \log _{b}a< 0\) или \( \left\{\begin{matrix} 0< b< 1, & & \\ a> 1 & & \end{matrix}\right. \cup \left\{\begin{matrix} b> 1, & & \\ 0< a< 1; & & \end{matrix}\right. & & \\ -\frac{\log _{b}^{2}a+1}{\log _{b}a}-\frac{\log _{b}^{2}a+1}{\log _{b}a}=\frac{-2\left ( \log _{b}^{2}a+1 \right )}{\log _{b}a}=-2\left ( \log _{b}a+\log _{a}b \right ); & & \end{matrix}\right. \left\{\begin{matrix} \log _{b}a> 0\) или \( \left\{\begin{matrix} 0< b< 1, & & \\ 0< a< 1 & & \end{matrix}\right. \cup \left\{\begin{matrix} b> 1, & & \\ a> 1; & & \end{matrix}\right. & & \\ \frac{\log _{b}^{2}a+1}{\log _{b}a}-\frac{\log _{b}^{2}a+1}{\log _{b}a}=0 & & \end{matrix}\right. \)

Ответ: \( -2\left ( \log _{b}a+\log _{a}b \right ) )\, если \( \left\{\begin{matrix} a> 1, & & \\ 0< b< 1 & & \end{matrix}\right )\ или \( \left\{\begin{matrix} 0< a< 1, & & \\ b> 1 & & \end{matrix}\right )\ и 0, если \( \left\{\begin{matrix} 0< a< 1, & & \\ 0< b< 1 & & \end{matrix}\right )\, или \( \left\{\begin{matrix} a> 1, & & \\ b> 1 & & \end{matrix}\right )\

Решить уравнения: \( \frac{2}{\sqrt{3}\log_{2}\sqrt{x^{2}}}-\frac{1}{\sqrt{\log_{2}\left ( -x \right )}}=0 \)

Решение №17694: ОДЗ: \( \left\{\begin{matrix} x^{2}> 0, & & & \\ -x> 0, & & & \\ \log_{2}\left ( -x \right )> 0 & & & \end{matrix}\right. \Leftrightarrow x< -1 \) Так как по ОДЗ \( x< 0 \), то имеем \( \frac{2}{\sqrt{3}\log_{2}\left ( -x \right )}=\frac{1}{\sqrt{\log_{2}\left ( -x \right )}} \Rightarrow \frac{4}{3\log_{2}^{2}\left ( -x \right )}=\frac{1}{\log_{2}\left ( -x \right )} \Leftrightarrow 3\log_{2}^{2}\left ( -x \right )-4\log_{2}\left ( -x \right )=0 \Leftrightarrow \log_{2}\left ( -x \right \)left ( 3\log_{2}\left ( -x \right )-4 \right )=0 \Leftrightarrow \log_{2}\left ( -x \right )=\frac{4}{3} \), так как \( \log_{2}\left ( -x \right \)neq 0 \) Отсюда \( -x=2^{4/3}, x=-2^{4/3} \)

Ответ: \( -2^{4/3} )\

Решить уравнения: \( 3*4^{x-2}+27=a+a*4^{x-2} \) При каких значениях \( a \) уравнение имеет решение?

Решение №17695: Перепишем уравнение в виде \( 3*4^{x-2}-a*4^{x-2}=a-27 \Leftrightarrow \left ( 3-a \right )*4^{x-2}=a-27 \Rightarrow 4^{x-2}=\frac{a-27}{3-a} .\frac{a-27}{3-a}> 0 \) Логарифмируя обе части этого уравнения по основанию 4, получим \( \log _{4}4^{x-2}=\log _{4}\frac{a-27}{3-a} \Leftrightarrow x-2=\log _{4}\frac{a-27}{3-a}, x=2+\log _{4}\frac{a-27}{3-a} \), где \( \frac{a-27}{3-a}> 0 \) Решая полученное неравенство методом интервалов, имеем. Таким образом \( a\epsilon \left ( 3; 27 \right ) \)

Ответ: \( 2+\log _{4}\frac{a-27}{3-a} )\, где \( a\epsilon \left ( 3; 27 \right ) )\

Упростить выражения: \( \left ( 6\left ( \log _{b}a*\log _{a^{2}}b+1 \right )+\log _{b}a^{-6}+\log _{a}^{2}b \right )^{1/2}-\log _{a}b \) при \( a> 1 \)

Решение №17696: \( \left ( 6\left ( \log _{b}a*\log _{a^{2}}b+1 \right )+\log _{b}a^{-6}+\log _{a}^{2}b \right )^{1/2}-\log _{a}b=\left ( 6\left ( \frac{1}{2}+1 \right )-6\log _{a}b+\log _{a}^{2}b \right )^{1/2}-\log _{a}b=\sqrt{9-6\log _{a}b+\log _{a}^{2}b}-\log _{a}b=\sqrt{\left ( 3-\log _{a}b \right )^{2}}-\log _{a}b=\left | 3-\log _{a}b \right |-\log _{a}b \) Раскрывая модуль, получим два случая: \( \left | 3-\log _{a}b \right |-\log _{a}b=\left\{\begin{matrix} 3-\log _{a}b\leq 0, & & \\ -3+\log _{a}b-\log _{a}b=-3; & & \end{matrix}\right. \left\{\begin{matrix} b\geq a^{3}, & & \\ \left | 3-\log _{a}b \right |-\log _{a}b=-3; & & \end{matrix}\right. \left | 3-\log _{a}b \right |-\log _{a}b=\left\{\begin{matrix} 3-\log _{a}b> 0, & & \\ 3-\log _{a}b-\log _{a}b=3-2\log _{a}b; & & \end{matrix}\right. \left\{\begin{matrix} 0< b< a^{3} & & \\ \left | 3-\log _{a}b \right |-\log _{a}b=3-2\log _{a}b. & & \end{matrix}\right. \)

Ответ: \( -3 )\, если \( b\geq a^{3} )\, и \( 3-2\log _{a}b )\, если \( 0< b< a^{3}, b\neq 1 )\

Решить уравнения: \( 8^{\frac{2}{x}}-2^{\frac{3x+3}{x}}+12=0 \)

Решение №17697: ОДЗ: \( x\neq 0 \) Перепишем уравнение в виде \( 2^{\frac{6}{x}}-2^{3+\frac{3}{x}}+12=0, \left ( 2^{\frac{3}{x}} \right )^{2}-8*2^{\frac{3}{x}}+12=0 \) Решая это уравнение как квадратное относительно \( 2^{\frac{3}{x}} \), получаем \( \left (2^{\frac{3}{x}} \right )_{1}=2 \), откуда \( \left ( \frac{3}{x} \right )_{1}=1, x_{1}=3 \), или \( \left (2^{\frac{3}{x}} \right )_{2}=6 \), откуда \( \left ( \log _{2}2^{\frac{3}{x}} \right )_{2}=\log _{2}6, \left ( \frac{3}{x} \right )_{2}=\log _{2}6, x_{2}=\frac{3}{\log _{2}6}=3\log _{6}2=\log _{6}8 \)

Ответ: \( 3; \log _{6}8 )\

Решить уравнения: \( 27x^{\log _{27}x}=x^{10/3} \)

Решение №17698: ОДЗ: \( 0< x\neq 1 \) Логарифмируя обе части уравнения по основанию 3, имеем \( \log _{3}27x^{\log _{27}x}=\log _{3}x^{10/3}, 3+\frac{1}{3}\log _{2}^{3}x=\frac{10}{3}\log _{3}x, \log _{2}^{3}x-10\log _{3}x+9=0 \) Решая это уравнение как квадратное относительно \( \log _{3}x \), получаем \( \left ( \log _{3}x \right )_{1}=1 \), или \( \left ( \log _{3}x \right )_{2}=9 \), откуда \( x_{1}=3, x_{2}=3^{9} \)

Ответ: \( 3; 3^{9} )\

Решить уравнения: \( 2\log _{3}\left ( x-2 \right )+\log _{3}\left ( x-4 \right )^{2}=0 \)

Решение №17699: ОДЗ: \( \left\{\begin{matrix} x-2> 0 & & \\ x-4\neq 0 & & \end{matrix}\right.2< x\neq 4 \) Из условия \( 2\log _{3}\left ( x-2 \right )+2\log _{3}\left | x-4 \right |=0 или \( \log _{3}\left ( x-2 \right )+\log _{3}\left | x-4 \right |=0 \) Имеем: \( \left\{\begin{matrix} 2< x< 4 & & \\ \log _{3}\left ( x-2 \right )+\log _{3}\left ( 4-x \right )=0 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2< x< 4 & & \\ \log _{3}\left ( x-2 \right \)left ( 4-x \right )=0 & &\end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2< x< 4 & & \\ x^{2}-6x+9=0 & & \end{matrix}\right. \), откуда \( x_{1}=3 \); \left\{\begin{matrix} x> 4 & & \\ \log _{3}\left ( x-2 \right \)left ( x-2 \right )=0 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x> 4 & & \\ \log _{3}\left ( x-2 \right \)left ( 4-x \right )=0 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x> 4 & & \\ x^{2}-6x+7=0 & & \end{matrix}\right. \), откуда \( x_{2}=3+\sqrt{2} \)

Ответ: \( 3; 3+\sqrt{2} )\