Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

В треугольник \(ABC\) вписана окружность, касающаяся стороны \(AB\) в точке \(M\). Пусть \(AM = x, BC = a\), полупериметр треугольника равен \(p\). Докажите, что \( x=p-a\).

Решение №17330: Обозначим точки касания вписанной окружности со сторонами \(BC\) и \(AC\) через \(K\) и \(N\) соответственно (рис. 161). Пусть \(AC = b\) и \(AB = c\). Тогда \(BK = BM = AB − AM = c − x, CK = CN = AC − AN = b − x, BC = BK + CK = c − x + b − x = b + c − 2x\). Следовательно, \( x=\frac{1}{2}\left ( b+c-a \right )=\frac{1}{2}\left ( b+c+a \right )-a=p-a \) .

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

\(CD\) — медиана треугольника . Окружности, вписанные в треугольники \(ACD\) и \(BCD\), касаются отрезка \(CD\) в точках \(M\) и \(N\). Найдите \(MN\), если \(AC − BC = 2\).

Решение №17331: Поскольку \(AD = DB\), а \(CM = 1/2(AC + CD - AD)\) и \(CN = 1/2(BC + CD - BD)\), то \( MN = | CM - CN| = | 1/2(AC + CD - AD) - 1/2(BC + CD - BD)| = 1/2| AC - BC| = 1/2 . 2 = 1\)

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

На основании \(AB\) равнобедренного треугольника \(ABC\) взята точка \(D\), причем \(BD − AD = 4\). Найдите расстояние между точками, в которых окружности, вписанные в треугольники \(ACD\) и \(BCD\), касаются отрезка \(CD\).

Решение №17332: Пусть окружности, вписанные в треугольники \(ACD\) и \(BCD\), касаются отрезка \(CD\) в точках \(M\) и \(N\) соответственно. Поскольку \(AC = BC\), а \( CM=\frac{AC+CD-AD}{2}, CN=\frac{BC+CD-BD}{2}, \), ТО \( MN=\left | CM-CN \right |=\left | \frac{AC+CD-AD}{2}- \frac{BC+CD-BD}{2} \right |= \frac{\left | BD-AD \right |}{2}=\frac{4}{2}=2 \)

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Окружность касается стороны \(BC\) треугольника \(ABC\) в точке \(M\), а продолжений сторон \(AB\) и \(AC\) — в точках \(N\) и \(P\) соответственно. Вписанная в этот треугольник окружность касается стороны \(BC\) в точке \(K\), а стороны \(AB\) — в точке \(L\). Докажите, что: а) отрезок \(AN\) равен полупериметру треугольника \(ABC\); б) \(BK = CM\); в) \(NL = BC\).

Решение №17333: а) Пусть \(p\) — полупериметр треугольника \(ABC\) (см. рис. ниже). Тогда \(AN + AP = AB + BN + AC + CP = AB + BM + AC + CM = = AB + AC + (BM + CM) = AB + AC + BC = 2p\) и \(AN = AP\) , поэтому \(AN = p\). б) Так как \(BK = p − AC\) и \(CM = CP = AP−AC = p−AC\), то \(BK = CM\). в) \(NL = AN − AL = p − (p − BC) = BC\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

В треугольник со сторонами 6, 10 и 12 вписана окружность. К окружности проведена касательная так, что она пересекает две большие стороны. Найдите периметр отсеченного треугольника.

Решение №17334: Пусть \(K\) — точка касания окружности, вписанной в треугольник \(ABC\) (см. рис. ниже), со стороной \(AB (AB = 10, AC = 12, BC = 6)\). Если \(p\) — полупериметр треугольника, то \(AK = p − BC = 14 − 6 = 8\), а \(AK\) равно полупериметру отсеченного треугольника.

Ответ: 16

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Через данную точку проведите прямую, отсекающую от данного угла треугольник заданного периметра.

Решение №17335: Пусть \(M\) — точка внутри данного угла (см. рис. ниже,а), \(A\) — вершина угла, \(2p\) — данный периметр. Отложим на сторонах данного угла точки \(B\) и \(C\) так, что \(AB = AC = p\). Впишем в угол окружность, касающуюся его сторон в точках \(B\) и \(C\), и проведем через точку \(M\) касательные к этой окружности (если это возможно). Если точка \(M\) расположена вне угла (см. рис. ниже,б), то искомая прямая — это касательная к построенной окружности, проходящая через точку \(M\) и отсекающая от данного угла треугольник, для которого построенная окружность — вневписанная.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Прямая, проходящая через центры двух окружностей, называется их линией центров. Докажите, что общие внешние (внутренние) касательные к двум окружностям пересекаются на линии центров этих окружностей.

Решение №17336: Общие внешние (внутренние) касательные к двум окружностям симметричны друг другу относительно линии центров.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Говорят, что две окружности касаются, если они имеют единственную общую точку (точка касания окружностей). Докажите, что линия центров двух касающихся окружностей проходит через точку их касания.

Решение №17337: Предположим, что точка касания не лежит на линии центров. Тогда точка, симметричная точке касания относительно линии центров, также принадлежит обеим окружностям, что противоречит условию.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Докажите, что две окружности касаются тогда и только тогда, когда они касаются некоторой прямой в одной и той же точке.

Решение №17338: Пусть \(M\) — единственная общая точка окружностей с центрами \(O_{1}\) и \(O_{2}\) (рис. 166). Точка \(M\) лежит на прямой \(O_{1}O_{2}\). Прямая, проходящая через точку \(M\) перпендикулярно \(O_{1}O_{2}\), является касательной к каждой из окружностей. Пусть теперь окружности с центрами \(O_{1}\) и \(O_{2}\) касаются некоторой прямой \(l\) в точке \(M\). Тогда радиусы \(O_{1}M\) и \(O_{2}M\) перпендикулярны \(l\), значит, точка \(M\) лежит на прямой \(O_{1}O_{2}\). Предположим, что окружности имеют еще одну общую точку \(K\), отличную от \(M\). Тогда точка, симметричная точке \(K\) относительно прямой \(O_{1}O_{2}\), также принадлежит обеим окружностям, что невозможно, так как две различные окружности не могут иметь три общие точки.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Две окружности касаются внешним (внутренним) образом. Докажите, что сумма (разность) их радиусов равна расстоянию между центрами. Верно ли обратное?

Решение №17339: Пусть сумма радиусов \(r\) и \(R\) двух окружностей равна расстоянию между их центрами \(O_{1}\) и \(O_{2}\) (см. рис. ниже). Тогда точка \(M\) отрезка \(O_{1}O_{2}\), удаленная от точки \(O_{1}\) на расстояние \(r\), удалена на расстояние \(R\) от точки \(O_{2}\), значит, \(M\) — общая точка окружностей. Если \(K\) — еще одна общая точка этих окружностей, то \(O_{1}O_{2}< O_{1}K + O_{2}K = r + R\), что невозможно. Остальное аналогично.

Ответ: Верно.