Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

На боковых сторонах \(АВ\) и \(ВС\) равнобедренного треугольника \(АВС\) отмечены точки \(D\) и \(Е\) так, что \(\angle AMD=\angle CME\), где \(М\) — середина основания \(АС\). Докажите, что \(АЕ = СD\).

Решение №17159: Докажите, что \(\Delta AMD = \Delta CME\) и \(\Delta ACE = \Delta CAD\).

Ответ: NaN

На наибольшей стороне \(АС\) треугольника \(АВС\) отмечены точки \(М\) и \(N\) так, что \(АМ = АВ\) и \(CN = СВ\). Докажите, что если \(ВМ = BN\), то треугольник \(АВС\) равнобедренный.

Решение №17160: Воспользуйтесь тем, что \(\angle ABM = \angle AMB = \angle CNB = \angle CBN\).

Ответ: NaN

Биссектриса \(ВК\) треугольника \(АВС\) равна стороне \(АВ\). На продолжении отрезка \(ВК\) за точку \(К\) отмечена точка \(L\), так, что \(\angle BAK=\angle BAL=180^{\circ}\). Докажите, что \(BL = ВС\).

Решение №17161: Сначала докажите равенство углов \(ВКС\) и \(BAL\) (рис. 71), а затем равенство треугольников \(ABL\) и \(КВС\).

Ответ: NaN

Точки \(А\), \(В\) и \(С\) лежат на одной прямой, вне этой прямой отмечены точки \(D\) и \(Е\) так, что \(АD = АЕ\) и \(BD = ВЕ\). Докажите, что \(CD = СЕ\).

Решение №17162: Треугольники \(ABD\) и \(АВЕ\) равны. Если точка \(С\) лежит на продолжении луча \(АВ\), то \(\angle CAD=\angle BAD = \angle BAE = \angle CAE \). Если точка \(С\) лежит на продолжении луча \(АВ\), то \(\angle CAD= 180^{\circ} -\angle BAD= 180^{\circ} - \angle BAE = \angle CAE\). В обоих случаях \(\angle CAD= \angle CAE\) , поэтому \(\Delta CAD = \Delta CAE\).

Ответ: NaN

Точка \(О\) — середина медианы \(АМ\) треугольника \(АВС\), \(ВО = ВМ\). Прямая \(СО\) пересекает сторону \(АВ\) в точке К. Докажите, что \(КА = КО\).

Решение №17163: Сначала докажите равенство треугольников \(АВО\) и \(ОСМ\) (по двум сторонам и углу между ними, см. рис. ниже), а затем воспользуйтесь равенством углов \(АОК\) и \(МОС\).

Ответ: NaN

На стороне \(АС\) треугольника \(АВС\) отмечены точки \(L\) и \(К\) так, что середина отрезка \(АК\) и \(ВК\) биссектриса угла \(LBC\). При этом \(ВС = 2BL\). Докажите, что \(КС = AВ\).

Решение №17164: Пусть точка \(М\) — середина отрезка \(ВС\) (см. рис. ниже). Тогда \(\Delta LBK = \Delta MBK\) (по двум сторонам и углу между ними) и \(\Delta KMC = \Delta ALB\) (по двум сторонам и углу между ними).

Ответ: NaN

Биссектриса \(AD\) треугольника \(АВС\) равна отрезку \(DC, АС = 2AB\). Найдите угол \(В\).

Решение №17165: Пусть \(М\) — середина стороны \(АС\) (см. рис. ниже). Треугольники \(ABD\) и \(АMD\) равны (по в двум сторонам и углу между ними). Поэтому \(\angle ABD = \angle AMD = 90^{\circ}\).

Ответ: 90

Две стороны одного треугольника равны двум сторонам другого треугольника. Равны также высоты, проведённые к третьим сторонам. Могут ли эти треугольники быть неравными?

Решение №17166: Возьмите равнобедренный треугольник \(АВС\), отметьте точку \(D\) на его основании \(АС\) (или на продолжении основания) и рассмотрите треугольники \(ABD\) и \(CBD\) (см. рис. ниже).

Ответ: Да.

Две стороны и угол одного треугольника равны двум сторонам и углу другого треугольника. Могут ли эти треугольники быть неравными?

Решение №17167: Возьмите равнобедренный треугольник \(АВС\), отметьте точку \(D\) на его основании \(АС\) и рассмотрите треугольники \(ABD\) и \(CBD\) (см. рис. ниже).

Ответ: Да.

Два угла и сторона одного треугольника равны двум углам и стороне другого треугольника. Могут ли эти треугольники быть неравными?

Решение №17168: Возьмите равнобедренный треугольник \(АВС\) с основанием \(АС\), отметьте точку \(D\) на стороне \(ВС\) так, что \(АD = АС\), и рассмотрите треугольники \(АВС\) и \(CAD\) (см. рис. ниже).

Ответ: Да.