Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Наибольшее и наименьшее значения функции,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Сборник задач по алгебре. Часть 3. Текстовые задачи. Элементы высшей математики. В помощь учащимся 10–11-х классов/ О.В. Нагорнов, А.В. Баскаков, О. Б. Баскакова, С.А. Гришин, А.Б. Костин, Р.Р. Резванов. – М.: НИЯУ МИФИ, 2009. – 132 с.
Пока решения данной задачи,увы,нет...
Ответ: 1.125
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Наибольшее и наименьшее значения функции,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Сборник задач по алгебре. Часть 3. Текстовые задачи. Элементы высшей математики. В помощь учащимся 10–11-х классов/ О.В. Нагорнов, А.В. Баскаков, О. Б. Баскакова, С.А. Гришин, А.Б. Костин, Р.Р. Резванов. – М.: НИЯУ МИФИ, 2009. – 132 с.
Пока решения данной задачи,увы,нет...
Ответ: 7.25
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Наибольшее и наименьшее значения функции,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Сборник задач по алгебре. Часть 3. Текстовые задачи. Элементы высшей математики. В помощь учащимся 10–11-х классов/ О.В. Нагорнов, А.В. Баскаков, О. Б. Баскакова, С.А. Гришин, А.Б. Костин, Р.Р. Резванов. – М.: НИЯУ МИФИ, 2009. – 132 с.
Пока решения данной задачи,увы,нет...
Ответ: -7
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Наибольшее и наименьшее значения функции,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Сборник задач по алгебре. Часть 3. Текстовые задачи. Элементы высшей математики. В помощь учащимся 10–11-х классов/ О.В. Нагорнов, А.В. Баскаков, О. Б. Баскакова, С.А. Гришин, А.Б. Костин, Р.Р. Резванов. – М.: НИЯУ МИФИ, 2009. – 132 с.
Пока решения данной задачи,увы,нет...
Ответ: -2
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Наибольшее и наименьшее значения функции,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Сборник задач по алгебре. Часть 3. Текстовые задачи. Элементы высшей математики. В помощь учащимся 10–11-х классов/ О.В. Нагорнов, А.В. Баскаков, О. Б. Баскакова, С.А. Гришин, А.Б. Костин, Р.Р. Резванов. – М.: НИЯУ МИФИ, 2009. – 132 с.
Пока решения данной задачи,увы,нет...
Ответ: 42
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Наибольшее и наименьшее значения функции,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге: Сборник задач по алгебре. Часть 3. Текстовые задачи. Элементы высшей математики. В помощь учащимся 10–11-х классов/ О.В. Нагорнов, А.В. Баскаков, О. Б. Баскакова, С.А. Гришин, А.Б. Костин, Р.Р. Резванов. – М.: НИЯУ МИФИ, 2009. – 132 с.
Пока решения данной задачи,увы,нет...
Ответ: 5.4
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, текстовые задачи на оптимизацию,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Сборник задач по алгебре. Часть 3. Текстовые задачи. Элементы высшей математики. В помощь учащимся 10–11-х классов/ О.В. Нагорнов, А.В. Баскаков, О. Б. Баскакова, С.А. Гришин, А.Б. Костин, Р.Р. Резванов. – М.: НИЯУ МИФИ, 2009. – 132 с.
Пока решения данной задачи,увы,нет...
Ответ: 12
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, текстовые задачи на оптимизацию,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Сборник задач по алгебре. Часть 3. Текстовые задачи. Элементы высшей математики. В помощь учащимся 10–11-х классов/ О.В. Нагорнов, А.В. Баскаков, О. Б. Баскакова, С.А. Гришин, А.Б. Костин, Р.Р. Резванов. – М.: НИЯУ МИФИ, 2009. – 132 с.
Пока решения данной задачи,увы,нет...
Ответ: 23/410
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, текстовые задачи на оптимизацию,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Сборник задач по алгебре. Часть 3. Текстовые задачи. Элементы высшей математики. В помощь учащимся 10–11-х классов/ О.В. Нагорнов, А.В. Баскаков, О. Б. Баскакова, С.А. Гришин, А.Б. Костин, Р.Р. Резванов. – М.: НИЯУ МИФИ, 2009. – 132 с.
Пока решения данной задачи,увы,нет...
Ответ: {5/6;40/21}
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, текстовые задачи на оптимизацию,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Сборник задач по алгебре. Часть 3. Текстовые задачи. Элементы высшей математики. В помощь учащимся 10–11-х классов/ О.В. Нагорнов, А.В. Баскаков, О. Б. Баскакова, С.А. Гришин, А.Б. Костин, Р.Р. Резванов. – М.: НИЯУ МИФИ, 2009. – 132 с.
Пока решения данной задачи,увы,нет...
Ответ: 15
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, текстовые задачи на оптимизацию,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Сборник задач по алгебре. Часть 3. Текстовые задачи. Элементы высшей математики. В помощь учащимся 10–11-х классов/ О.В. Нагорнов, А.В. Баскаков, О. Б. Баскакова, С.А. Гришин, А.Б. Костин, Р.Р. Резванов. – М.: НИЯУ МИФИ, 2009. – 132 с.
Пока решения данной задачи,увы,нет...
Ответ: 2\sqrt{5}
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, текстовые задачи на оптимизацию,
Задача в следующих классах: 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Сборник задач по алгебре. Часть 3. Текстовые задачи. Элементы высшей математики. В помощь учащимся 10–11-х классов/ О.В. Нагорнов, А.В. Баскаков, О. Б. Баскакова, С.А. Гришин, А.Б. Костин, Р.Р. Резванов. – М.: НИЯУ МИФИ, 2009. – 132 с.
Пока решения данной задачи,увы,нет...
Ответ: 0.125
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №7335: Выпишем несколько первых членов последовательности: \(1; 2; 2; 1; \frac{1}{2}; \frac{1}{2}; 1; 2; 2\). Ясно(и легко проверяется по индукции), что последовательность \(\left \{ a_{n} \right \} \)переодична и период равен 6, иначе говоря, \(\forall n\in N a_{n}=a_{n+6}. Тогда \left \{ \frac{1}{2}; 1; 2 \right \}\) - множество значений этой последовательности.
Ответ: \left \{ \frac{1}{2}; 1; 2 \right \}
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №7336: Из неравенства \(x_{n}=n^{2}-2n-1\geqslant -2\) следует, что последовательность \(\left \{ x_{n} \right \}\) ограничена снизу. Так как множество значений квадратичной функции \(f\left ( x \right )=x^{2}-2x-1\) при натуральных значениях аргумента не ограничено сверху, то последовательность не ограничена сверху.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №7340: Для любого натурального n выполнено неравенство \(\left | \frac{\cos }{n} \right |=\frac{\left | \cos n \right |}{n}\leqslant \frac{1}{n}\leqslant 1\). Значит, последовательность \(\left \{ x_{n} \right \}\) ограниченная.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №7344: Доказано, что с помощью метода математической индукции, что при \(n\geqslant 4 2^{n}< n!\). Тогда \(\forall n\geqslant 4 0< x_{n}< 1\),т.е. последовательность \(\left \{ x_{n} \right \} \)ограничена.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №7347: Необязательно ограничена. Например, \(x_{n}=\frac{1}{n} \)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №7350: Необязательно ограничена. Например, при \(x_{n}=\frac{1}{\sqrt{n}}\) получаем \(y_{n}=\sqrt{n} \)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №7353: Так как последовательности \(\left \{ x_{n} \right \}\) и \(\left \{ y_{n} \right \}\)ограничены, существуют такие числа A и B, что \(\forall n\in N \left ( \left | x_{n} \right |\leqslant A \right )\wedge \left ( \left | y_{n} \right |\leqslant B \right ) \) Неравенства \(\left | x_{n}-y_{n} \right |\leqslant \left | x_{n} \right |+\left | y_{n} \right |\leqslant A+B\) показывают, что последовательность \(z_{n}=x_{n}+y_{n}\) обязательно ограничена.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №7355: Так как последовательности \(\left \{ x_{n} \right \} и \left \{ y_{n} \right \}\) ограничены, существуют такие числа A и B, что \(\forall n\in N \left ( \left | x_{n} \right |\leqslant A \right )\wedge \left ( \left | y_{n} \right |\leqslant B \right )\) Каждый член последовательности по модулю не превосходит 2, поэтому последовательность ограничена независимо от ограниченности исходных последовательностей.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №7358: Рассмотрим функцию \(f\left ( x \right )=-x^{2}+3x+4\). Абцисса вершины параболы \(x_{0}=\frac{3}{2}> 1\), следовательно, последовательность \(\left \{ x_{n} \right \}\) убывающая, начиная с n=2. При этом \(x_{1}=x_{2}=6\), поэтому можно утверждать, что последовательность убывает на множетве N, но нестрого.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №7363: Последовательность с общим членом \(x_{n}=1+\left ( \frac{1}{3} \right )^{n}\) убывает, так как убывает функция \(f\left ( x \right )=\left ( \frac{1}{3} \right )^{x} \)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №7370: Докажем, что \(\lim n \to \frac{\sin n}{n}=0\). Заметим, что \(\left | \frac{\sin n}{n} \right |\leqslant \frac{1}{n}\). Тогда, взяв \(N_{\varepsilon }=\left [ \frac{1}{\varepsilon } \right ]+1\), получим, что неравенство \(\left | \frac{\sin n}{n} \right |< \varepsilon выполнено для всех n> N_{\varepsilon } \)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №7377: а) \(x_{n}=-n б) x_{n}=0\). Предел не может быть равен 1. Множеством взможных пределов последовательноти \(\left \{ x_{n} \right \} \)является луч \(\left ( -\propto ;0 \right ]\). 1) Допустим, что предел последовательности \(\left \{ x_{n} \right \}\) равен 1, тогда \(\forall \varepsilon > 0 \exists k\in N: \forall n\geqslant k 1-\varepsilon < x_{n}< \varepsilon +1\). В силу произвольного выбор \(\varepsilon\) возьмем \(\varepsilon _{1}=1-\varepsilon > 0\) и тогда, начиная с некоторого нормера, \(x_{n}> \varepsilon _{1}\). Получили противоречие, значит,наше предположение было неверным. 2) Действительно, любое неположительное число a является пределом последовательности, каждый член которой равен a, удовлетворяющей условию задачи. Кроме того, рассуждение, повторяющее пункт 1 с заменой 1 на произвольное положительное число, показывает, что никакое положительное число не может быть пределом последовательности, удовлетворяющей условию задачи.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №7380: Пусть \(\left \{ a_{n} \right \}\)- последовательность вида 0; 0; 1; 0; 0; 1; 0; 0; 1; ... . Тогда последовательность \(\left \{ n^{2}a_{n}a_{n+1} \right \}\) состоит из одних нулей и сходится, а последовательноть \(\left \{ n^{2}a_{n}a_{n+3} \right \}\) будет иметь вид 0; 0; 9; 0; 0; 36; ... ,т.е. расходится.
Ответ: Необязательно сходится
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №7394: \( x_{n}=\sqrt{n^{2}+n}; y_{n}=-n\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №7396: \( x_{n}=\left ( -1 \right )^{n}; y_{n}=n\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №7405: \( x_{n}=\frac{1}{n+1}, y_{n}=\frac{1}{n} \)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №7418: Пусть \(\sqrt{x_{n}}=\sqrt{a}+\alpha _{n}\). Заметим, что \(\alpha =\sqrt{x_{n}}-\sqrt{a}=\frac{x_{n}-a}{\sqrt{x_{n}}+\sqrt{a}}\), и получим \)\left | \alpha_{n} \right |< \frac{\left | x_{n} -a\right |}{\sqrt{a}}\). Пусть дано произвольное число \(\varepsilon > 0\). Так как последовательность \(\left \{ x_{n}-a \right \}\) бесконечно малая, то, начиная с некоторого номера n=k, будет выполняться неравенство \(\left | x_{n}-a \right |< \varepsilon \sqrt{a}\). Следовательно, при \(n\geqslant k\) будет выполняться неравенство \(\left | \alpha _{n} \right |< \varepsilon\) , а значит \lim_{ n \to \propto} \alpha _{n}=0. Тогда \lim_{n \to \propto} \sqrt{x_{n}}=\sqrt{a} \)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5
Решение №7422: 1; 0
Ответ: NaN