Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Решить уравнения: \( \log _{5} \left ( 3x -11 \right ) +\log _{5} \left ( x -27 \right ) =3 + \log _{ 5} 8 \)

Решение №15772: ОДЗ: \( \left\{\begin{matrix} 3x-11> 0 & & \\ x-27> 0 & & \end{matrix}\right. x> 27 \) Имеем \( \log _{5}\left(3x-11 \right )+\log _{5}\left ( x-27 \right )=\log _{5}125+\log _{5}8 , \log _{5}\left(3x-11 \right ) *\left ( x-27 \right ) =\log _{5}\left ( 125*8 \right ) , \left( 3x -11 \right ) \left ( x -27 \right ) = 125 *8, 3x^{ 2} -92x -703 =0 \), откуда находим \( x_{1}=37 , x_{ 2}= - \frac{ 19}{ 3} ; x_{2}= - \frac{ 19}{ 3} \) не подходит по ОДЗ.

Ответ: 37

Решить уравнения: \( 0.5\left ( \lg \left ( x^{2}-55x+90 \right )-\lg \left ( x-36 \right ) \right )=\lg \sqrt{2} \)

Решение №15773: ОДЗ: \left\{\begin{matrix} x^{2}-55x+90> 0 & & \\ x-36> 0 & & \end{matrix}\right \) Из условия \( 0.5\left ( \lg \left ( x^{2}-55x+90 \right )-\lg \left ( x-36 \right ) \right )=0.5\lg 2, \lg \frac{x^{2}-55x+90}{x-36}=\lg 2, \frac{x^{2}-55x+90}{x -36}=2 \) Имеем \( x^{2}-57x+162=0 \) при \( x\neq 36 \) Отсюда \( x_{1}=54 , x_{ 2}=3 ; x_{ 2}= 3 \) не подходит по ОДЗ.

Ответ: 54

Решить уравнения: \( \log _{2}x+\log _{4}x+\log _{8}x = 11 \)

Решение №15774: ОДЗ: \( x> 0 \) Имеем \( \log _{2}x+\frac{1}{2}\log _{2}x+\frac{1}{3}\log _{2}x=11, \log _{2}x=6 \), откуда \( x = 2 ^{ 6 } = 64 \)

Ответ: 64

Решить уравнения: \( \sqrt{3}*3^{\frac{x}{1+\sqrt{x}}}*\left ( \frac{1}{3} \right )^{\frac{2+\sqrt{x}+x}{2\left ( 1+\sqrt{x} \right )}}=81 \)

Решение №15775: ОДЗ: \( x\geq 0 . 3^{\frac{1}{2}}*3^{\frac{x}{1+\sqrt{x}}}*3^{-\frac{2+\sqrt{x}+x}{2\left ( 1+\sqrt{x} \right )}}=3^{4}, 3^{\frac{1}{2}+\frac{x}{1+\sqrt{x}}-\frac{2+\sqrt{x}+x}{2\left ( 1+\sqrt{x} \right )}}= 3^{4} \), откуда \( \frac{1}{2}+\frac{x}{1+\sqrt{x}}-\frac{2+\sqrt{x}+x}{2 \left ( 1+ \sqrt{x} \right )}=4, \Rightarrow x-8\sqrt{x} - 9 = 0 \) Решив это уравнение как квадратное относительно \( \sqrt{x} \), найдем \( \sqrt{x}=-1,\varnothing \); или \( \sqrt{x}=9 \), откуда \( x=81 \)

Ответ: 81

Решить уравнения: \( 7^{\lg x}-5^{\lg x+1}=3*5^{\lg x-1}-13*7^{\lg x-1} \)

Решение №15776: ОДЗ: \( x> 0 \) Из условия \( 7^{\lg x}-5*5^{lgx}=\frac{3}{5}*5^{\lg x}-\frac{13}{7}*7^{\lg x} , 35*7^{\lg x}+65*7^{\lg x}=21*5^{\lg x}+175*5^{\lg x} , 100*7^{\lg x}=196*5^{\lg x} , \left ( \frac{7}{5} \right )^{\lg x}=\left ( \frac{7}{5} \right )^{2} \), откуда \( \lg x=2 \) и \( x=100 \)

Ответ: 100

Решить уравнения: \( 5^{\lg x}=50-x^{\lg 5} \)

Решение №15777: ОДЗ: \( 0< x\neq 1 \) Перепишем уравнение в виде \( 5^{\lg x}=50-5^{\lg x}, 2*5^{\lg x}=50, 5^{\lg x}=25 \), откуда \( \lg x=2, x=10^{2}=100\)

Ответ: 100

Решить уравнения: \( \lg \sqrt{10}-\lg 100=\sqrt[6]{\lg \left ( 390635-5^{\sqrt[3]{2x}} \right )}-2.5 \)

Решение №15778: ОДЗ: \( \lg \left ( 390635-5^{\sqrt[3]{2x}} \right \)geq 0 \) Перепишем уравнение в виде \( \lg \sqrt{10}-\lg 100+2.5=\sqrt[6]{\lg \left ( 390635-5^{\sqrt[3]{2x}} \right )} \Leftrightarrow 0.5-2+2.5= \sqrt[6]{\lg \left ( 390635-5^{\sqrt[3]{2x}} \right )}, 1=\sqrt[6]{\lg \left ( 390635-5^{\sqrt[3]{2x}} \right )}\Leftrightarrow 10=\left ( 390635-5^{\sqrt[3]{2x}} \right \)Leftrightarrow 5^{\sqrt[3]{2x}}=390625 \Leftrightarrow 5^{\sqrt[3]{2x}}=5^{8} \Leftrightarrow \sqrt[3]{2x}=8, x=256 \)

Ответ: 256

Известно, что \( \beta =10^{\frac{1}{1-\lg \alpha }} \), и \( \gamma =10^{\frac{1}{1-\lg \beta }} \) Найти зависимость \( \alpha \),от \( \gamma \)

Решение №15779: \( \lg \beta =\frac{1}{1-\lg \alpha }; \lg \gamma =\frac{1}{1-\lg \beta }=\frac{1}{1-\frac{1}{1-\lg \alpha }}=\frac{1-\lg \alpha }{-\lg \alpha }=-\frac{1}{\lg \alpha }+1; \frac{1}{\lg \alpha }=1-\lg \gamma ;\lg \alpha =\frac{1}{1-\lg \gamma }; \alpha =10^{1/\left ( 1-\lg \gamma \right )} \)

Ответ: \( \alpha =10^{1/\left ( 1-\lg \gamma \right )} )\

Известно, что \( \log _{a}x=\alpha ,\log _{b}x=\beta , \log _{c}x=\gamma ,\log _{d}x=\delta , x\neq 1 \) Найти \( \log _{abcd}x \)

Решение №15780: \( \log _{abcd}x=\frac{\log _{x}x}{\log _{x}abcd}=\frac{1}{\log _{x}a+\log _{x}b+\log _{x}c+\log _{x}d}=\frac{1}{\frac{1}{\log _{a}x}+\frac{1}{\log _{b}x}+\frac{1}{\log _{c}x}+\frac{1}{\log _{d}x}}=\frac{1}{\frac{1}{\alpha }+\frac{1}{\beta }+\frac{1}{\gamma }+\frac{1}{\delta }}=\frac{\alpha \beta \gamma \delta }{\beta \gamma \delta +\alpha \gamma \delta +\alpha \beta \delta +\alpha \beta \delta } \)

Ответ: \( \frac{\alpha \beta \gamma \delta }{\beta \gamma \delta +\alpha \gamma \delta +\alpha \beta \delta +\alpha \beta \delta } )\

Решить уравнения: \( \left ( 16^{\sin x} \right )^{\cos x}+\frac{6}{4^{\sin ^{2}\left ( x-\frac{\pi }{4} \right )}}-4=0 \)

Решение №15781: Преобразуем знаменатель второго члена уравнения: \( 4^{\sin ^{2}\left ( x-\frac{\pi }{4} \right )}=4^{\left ( \sin x\cos \frac{\pi }{4}-\cos x\sin \frac{\pi }{4} \right )^{2}}=4^{\left ( \frac{\sqrt{2}}{2} \right \)left ( \sin ^{2}x-2\sin x\cos x+\cos ^{2}x \right )}=4^{\frac{1}{2}\left ( 1-\sin 2x \right )}=4^{\frac{1}{2}-\frac{1}{2}\left ( \sin 2x \right )}=\frac{2}{2^{\sin 2x}} \), откуда \( \frac{6}{4^{\sin ^{2}\left ( x-\frac{\pi }{4} \right )}}=3*2^{\sin 2x} \) Получаем уравнение \( \left ( 2^{\sin 2x} \right )^{2}+3*2^{\sin 2x}-4=0 \Rightarrow 2^{\sin 2x}=-4 \), (нет решений) или 2^{\sin 2x}=1 \), откуда \( \sin 2x=0 , x=\frac{\pi n}{2} \), где \( n\epsilon Z \)

Ответ: \( \frac{\pi n}{2}; n\epsilon Z )\