Задачи

Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По сложности:

По авторам:

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

На проводник в магнитном поле действует сила Ампера \(F_{A}\) и рассчитывается по формуле: \(F_{A}=I\cdot B\cdot l\cdot \sin \alpha\), где \(I\) - сила тока, \(B\) - индукция магнитного поля, \(l\) - длина проводника, \(\alpha\) - угол наклона проводника тока к линиям индукции. Под действием этой силы проводник совершает работу, равную \(A=F_{A}\cdot S\), где \(S\) - расстояние. Определите значение данной работы, если проводник с током \(21\) А и длиной \(0,4\) м перемещается в однородном магнитном поле с индукцией \(1,2\) Тл перпендикулярно к линиям индукции на расстояние \(0, 25\) м.

Решение №22368: Для того , чтобы найти искомое значение работы \(А\), необходимо воспользоваться формулой: \(A=F_{A}\cdot S\), где значение \(S=0,25\) м по условию, а \(=F_{A}\) выразим из формулы: \(F_{A}=I\cdot B\cdot l\cdot \sin \alpha \). Подставим данные выражения в исходную формулу нахождения работы, получаем тригонометрическое уравнение и решаем его:\(A=F_{A}\cdot S=I\cdot B\cdot l\cdot \sin \alpha \cdot S=21\cdot 1,2\cdot 0,4\cdot 0,25\cdot \sin 90^{\circ}=2,52\) Дж \(= 2520\) мДж.

Ответ: 2520

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

В однородном магнитном поле индукцией \(15\) Тл проводник переместился перпендикулярно линиям магнитной индукции на \(10\) см. На проводник в магнитном поле действует сила Ампера \(F_{A}\) и рассчитывается по формуле: \(F_{A}=I\cdot B\cdot l\cdot \sin \alpha\), где \(I\) - сила тока, \(B\) - индукция магнитного поля, \(l\) - длина проводника, \(\alpha\) - угол наклона проводника тока к линиям индукции. Под действием этой силы проводник совершает работу, равную \(A=F_{A}\cdot S\), где \(S\) - расстояние. Определите значение работы, которую совершил электрический ток, если длина активной части проводника \(40\) см, а сила тока в нем \(2\) А ?

Решение №22369: Для того , чтобы найти искомое значение работы \(А\), необходимо воспользоваться формулой: \(A=F_{A}\cdot S\), где значение \(S=0,25\) м по условию, а \(=F_{A}\) выразим из формулы: \(F_{A}=I\cdot B\cdot l\cdot \sin \alpha \). Подставим данные выражения в исходную формулу нахождения работы, получаем тригонометрическое уравнение и решаем его: \(A=F_{A}\cdot S=I\cdot B\cdot l\cdot \sin \alpha \cdot S=2\cdot 15\cdot 0,4\cdot 0,1\cdot \cos 90^{\circ}=1,2\) Дж \(=1200\) мДж.

Ответ: 1200

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что на проводник в магнитном поле действует сила Ампера \(F_{A}\) и рассчитывается по формуле: \(F_{A}=I\cdot B\cdot l\cdot \sin \alpha\), где \(I\) - сила тока, \(B\) - индукция магнитного поля, \(l\) - длина проводника, \(\alpha\) - угол наклона проводника тока к линиям индукции. Определите значение силы тока, если на прямой проводник длиной \(0,5\) м, перпендикулярный линиям индукции магнитного поля, действует сила \(0,15\) Н, а индукция поля \(20\) мТл.

Решение №22370: Решение задачи сводится к нахождению неизвестного значения силы тока \(I\) в уравнении: \(F_{A}=I\cdot B\cdot l\cdot \sin \alpha => I=\frac{F_{A}}{B\cdot l\cdot \sin \alpha }=\frac{0,15}{20\cdot 10^{-3}\cdot 0,5\cdot \sin 90^{\circ}}=15\) А.

Ответ: 15

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что на проводник в магнитном поле действует сила Ампера \(F_{A}\) и рассчитывается по формуле: \(F_{A}=I\cdot B\cdot l\cdot \sin \alpha\), где \(I\) - сила тока, \(B\) - индукция магнитного поля, \(l\) - длина проводника, \(\alpha\) - угол наклона проводника тока к линиям индукции. Определите какой силы ток проходит по прямолинейному проводнику массой \(2\) кг и длиной \(0,5\) м, помещенному в однородное магнитное поле перпендикулярно к линиям индукции \(15\) Тл, если справделиво равенство \(F_{A}=m\cdot g\), где \(m\) - масса проводника, \(g\) - ускорение свободного падения, равное \(10\) м/с2.

Решение №22371: Для того, чтобы найти значение силы тока, воспользуемся равенством из условия: \(F_{A}=m\cdot g\) из этого следует, что \(I\cdot B\cdot l\cdot \sin \alpha =m\cdot g\). Выражаем в даном уравнении силу тока \(I\) и решаем его: \(I\cdot B\cdot l\cdot \sin \alpha =m\cdot g=> I=\frac{m\cdot g}{B\cdot l\cdot \sin \alpha }=\frac{2\cdot 10}{15\cdot 0б5\cdot \sin 90^{\circ}}=2,67\) А.

Ответ: 2.67

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что на проводник в магнитном поле действует сила Ампера \(F_{A}\) и рассчитывается по формуле: \(F_{A}=I\cdot B\cdot l\cdot \sin \alpha\), где \(I\) - сила тока, \(B\) - индукция магнитного поля, \(l\) - длина проводника, \(\alpha\) - угол наклона проводника тока к линиям индукции. Под действием этой силы проводник совершает работу, равную \(A=F_{A}\cdot S\), где \(S\) - расстояние. Определите работу, совершаемую магнитным полем с индукцией \(150\) мТл при перемещении проводника длиной \(0,50\) м на расстояние \(1,2\), если по нему течет ток \(5\) А и направление перемещения совпадает с направлением действия силы. Угол между направлением тока и вектором индукции магнитного поля \(30^{\circ}\).

Решение №22372: Для того , чтобы найти искомое значение работы \(А\), необходимо воспользоваться формулой: \(A=F_{A}\cdot S\), где значение \(S=0,25\) м по условию, а \(=F_{A}\) выразим из формулы: \(F_{A}=I\cdot B\cdot l\cdot \sin \alpha \). Подставим данные выражения в исходную формулу нахождения работы, получаем тригонометрическое уравнение и решаем его: \(A=F_{A}\cdot S=I\cdot B\cdot l\cdot \sin \alpha\cdot S=5\cdot 0,15\cdot 0,5\cdot 1,2\cdot \sin 30^{\circ}=0,225\) Дж.

Ответ: 0.225

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что если в однородное магнитное поле внести рамку (или плоский контур, что то же самое), по которой течет ток, то в общем случае на стороны рамки будут действовать силы Ампера. Эти силы создадут вращающий момент сил \(M\), который можно найти по следующей формуле: \(M=B\cdot I\cdot S\cdot \sin \alpha \), где \(B\) - индукция магнитного поля, \(I\) - сила текущего в рамке тока, \(S\) - площадь рамки, \(\alpha \) - угол между нормалью к плоскости контура и вектором магнитной индукции. Определите силу тока, протекающего по плоскому контуру площадью \(5\) см2, находящемуся в однородном магнитном поле с индукцией \(0,5\) Тл, если максимальный механический момент, действующий со стороны поля, равен \(0,25\) мН*м.

Решение №22373: Для того, чтобы найти значение силы тока, воспользуемся формулой: \(M=B\cdot I\cdot S\cdot \sin \alpha \). Очевидно, что максимальный магнитный момент будет наблюдаться тогда, когда угол α между нормалью к плоскости контура и вектором магнитной индукции будет равен 90°, то есть плоскость контура будет параллельна линиям магнитной индукции. Тогда имеем уравнение для решения задачи: \(M_{max}=B\cdot I\cdot S\cdot=> I=\frac{0,25\cdot 10^{-3}}{0,5\cdot 5\cdot 10^{-4}}=1\) А.

Ответ: 1

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Магнитный поток через некоторую площадку, помещенную в однородном магнитном поле, определяется по следующей формуле: \(\Phi = B\cdot S\cdot \cos \alpha \), где \(В\) - индукция магнитного поля, \(S\) - площадь поверхности, через которую определяется магнитный поток, \(\alpha \)- угол между нормалью к площадке и вектором магитной индукции. Рассчитайте индукцию поля, если полоска площадью \(200\)см2, расположенная под углом \(\beta=60^{\circ}\) к направлению однородного магнитного поля, пронизывает магнитный поток \(1\) мВб. Угол \(\alpha =90^{\circ}-\beta \).

Решение №22374: Для того, чтобы найти индукцию поля \(B\) , необходимо рассчитать следующее уравнение: \(\Phi = B\cdot S\cdot \cos \alpha \). По условию задачи дано, что \(S=200\) см2, \(\beta=60^{\circ}\), \(\Phi=1\) мВб, \(\alpha =90^{\circ}-\beta \). Подставляем данные в исходное уравнение и решаем его: \(\Phi = B\cdot S\cdot \cos \alpha= B\cdot S\cdot \cos (90^{\circ}-\beta)= B\cdot S\cdot\sin \beta = > B=\frac{\Phi }{S\cdot \sin \beta }=\frac{10^{-3}}{200\cdot 10^{-4}\cdot \sin 60^{\circ}}=0,0577\) Тл \(=57,7\) мТл.

Ответ: 57.7

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Магнитный поток через некоторую площадку, помещенную в однородном магнитном поле, определяется по следующей формуле: \(\Phi = B\cdot S\cdot \cos \alpha \), где \(В\) - индукция магнитного поля, \(S\) - площадь поверхности, через которую определяется магнитный поток, \(\alpha \)- угол между нормалью к площадке и вектором магитной индукции. Рассчитайте, какой магнитный поток пройдет через площадку в \(50\) см2, расположенную перпендикулярно вектору магнитной индукции, если магнитная индукция однородного магнитного поля равна \(4\) Тл. Угол \(\alpha =90^{\circ}-\beta \).

Решение №22375: Для того, чтобы определить какой магнитный поток пройдет через площадку, необходимо рассчитать следующее уравнение: \(\Phi = B\cdot S\cdot \cos \alpha \), где \( B=4\) Тл, \(S=50\)см2, \(\beta =90^{\circ}\). Подставляем данные значения в исходное уравнение и решаем его: \(\Phi = B\cdot S\cdot \cos \alpha= B\cdot S\cdot \cos (90^{\circ}-\beta)= B\cdot S\cdot\sin \beta = 4\cdot 50\cdot 10^{-4}\cdot \sin 90^{\circ}=0,02\) Вб.

Ответ: 0.02

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Магнитный поток через некоторую площадку, помещенную в однородном магнитном поле, определяется по следующей формуле: \(\Phi = B\cdot S\cdot \cos \alpha \), где \(В\) - индукция магнитного поля, \(S\) - площадь поверхности, через которую определяется магнитный поток, \(\alpha \)- угол между нормалью к площадке и вектором магитной индукции. Определите какой магнитный поток пройдет через площадку \(25\) см2, расположенную под углом \(\beta =30^{\circ}\) к линиям магнитного поля, если магнитная индукция однородного магнитного поля равна \(0,5\) Тл. Угол \(\alpha =90^{\circ}-\beta \).

Решение №22376: Для того, чтобы определить какой магнитный поток пройдет через площадку, необходимо рассчитать следующее уравнение: \(\Phi = B\cdot S\cdot \cos \alpha \), где \(B=0,5\) Тл, \(S = 25\) см2, \(\beta =30^{\circ}\). Подставляем данные в исходное уравнение и решаем его: \(\Phi = B\cdot S\cdot \cos \alpha= B\cdot S\cdot \cos (90^{\circ}-\beta)= B\cdot S\cdot\sin \beta = 0,5\cdot 25\cdot 10^{-4}\cdot \sin 30^{\circ}=625\cdot 10^{-6}\) Вб \(=625\) мкВб.

Ответ: 625

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Магнитный поток через некоторую площадку, помещенную в однородном магнитном поле, определяется по следующей формуле: \(\Phi = B\cdot S\cdot \cos \alpha \), где \(В\) - индукция магнитного поля, \(S\) - площадь поверхности, через которую определяется магнитный поток, \(\alpha \)- угол между нормалью к площадке и вектором магитной индукции. Определите магнитный поток, пронизывающий контур площадью \(25\) см2, если находится он в однородном магнитном поле с индукцией \(0,04\) Тл и его плоскость составляет \(\beta =30^{\circ}\) с линиями индукции. Угол \(\alpha =90^{\circ}-\beta \).

Решение №22377: Для того, чтобы определить какой магнитный поток пронизывает контур, необходимо рассчитать следующее уравнение: \(\Phi = B\cdot S\cdot \cos \alpha \), где \(S=25\) см2, \(B=0,04\) Тл, \( \beta =30^{\circ}\). Подставляем данные в исходное уравнение и решаем его: \(\Phi = B\cdot S\cdot \cos \alpha= B\cdot S\cdot \cos (90^{\circ}-\beta)= B\cdot S\cdot\sin \beta = 0,04\cdot 25\cdot 10^{-4}\cdot \sin 30^{\circ}=5\cdot 10^{-5}\) Вб \(=50\) мкВб.

Ответ: 50

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Магнитный поток через некоторую площадку, помещенную в однородном магнитном поле, определяется по следующей формуле: \(\Phi = B\cdot S\cdot \cos \alpha \), где \(В\) - индукция магнитного поля, \(S\) - площадь поверхности, через которую определяется магнитный поток, \(\alpha \)- угол между нормалью к площадке и вектором магитной индукции. Рассчитайте магнитный поток через плоскую поверхность площадью \(40\) см2, расположенную перпендикулярно силовым линиям однородного магнитного поля, индукция которого равна \(2,5\) мТЛ. Угол \(\alpha =90^{\circ}-\beta \).

Решение №22378: Для того, чтобы определить какой магнитный поток пронизывает контур, необходимо рассчитать следующее уравнение: \(\Phi = B\cdot S\cdot \cos \alpha \), где \(S=40\) cм2, \(B=2,5\) мТл, \(\beta =90^{\circ}\). Подставляем данные в исходное уравнение и решаем его: \(\Phi = B\cdot S\cdot \cos \alpha= B\cdot S\cdot \cos (90^{\circ}-\beta)= B\cdot S\cdot\sin \beta = 2,5\cdot 10^{-3}\cdot 40\cdot 10^{-4}\cdot \sin 90^{\circ}=10^{-5}\) Вб \(= 10\) мкВб.

Ответ: 10

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что если в однородное магнитное поле внести рамку (или плоский контур, что то же самое), по которой течет ток, то в общем случае на стороны рамки будут действовать силы Ампера. Эти силы создадут вращающий момент сил \(M\), который можно найти по следующей формуле: \(M=B\cdot I\cdot S\cdot \sin \alpha \), где \(B\) - индукция магнитного поля, \(I\) - сила текущего в рамке тока, \(S\) - площадь рамки, \(\alpha \) - угол между нормалью к плоскости контура и вектором магнитной индукции. Определите индукцию однородного магнитного поля, если на прямоугольную рамку из \(100\) витков площадью \(6\) см2, по которой идет ток \(5\) А, действует максимальный вращательный момент со стороны поля \(3\) мН*м и максимальный магнитный момент будет наблюдаться тогда, когда угол \(\alpha \) между нормалью к плоскости рамки и вектором магнитной индукции будет равен \(90^{\circ}\).

Решение №22379: Для того, чтобы определить индукцию однородного магнитного поля, необходимо воспользоваться следющей формулой: \(M=B\cdot I\cdot S\cdot \sin \alpha\), где \(S =6\) см2, \(I=5\) A, \(M^{max}=3\) мН*м. Так как максимальный магнитный момент будет наблюдаться тогда, когда угол \(\alpha\) между нормалью к плоскости рамки и вектором магнитной индукции будет равен \(90^{\circ}\), то \(M_{max}=B\cdot I\cdot S\), а учитывая, что рамка состоит из \(N=100\) витков, исходное уравнение приобретает вид: \(M_{max}=N\cdot B\cdot I\cdot S\). Подставляем в уравнение исходные данные и решаем его: \(M_{max}=N\cdot B\cdot I\cdot S=> B=\frac{M_{max}}{N\cdot I\cdot S}=\frac{3\cdot 10^{-3}}{100\cdot 5\cdot 6\cdot 10^{-4}}=0,01\) Тл.

Ответ: 0.01

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

ЭДС индукции в проводнике \(E_{i}\), движущемся поступательно в магнитном поле, определяется по формуле:\(E_{i}=B\cdot v\cdot l\cdot \sin \alpha\), где \(B\) - индукция магнитного поля, \(v\) - скорость проводника, \(l\) - длина проводника, \(\alpha\) - угол между вектором скорости проводника и вектором магнитной индукции. Рассчитайте величину ЭДС индукции в проводнике с длиной активной части \(0,25\) м, который перемещается в однородном магнитном поле с индукцией \(8\) мТл со скоростью \(5\)м/с2 под углом \(30^{\circ}\) к направлению поля.

Решение №22380: Для того, чтобы рассчитать величину ЭДС индукции в проводнике, необходимо воспользоваться уравнением:\(E_{i}=B\cdot v\cdot l\cdot \sin \alpha\) , где по условию задачи \(l=0,25\) м, \(B=8\) мТл, \(v=5\) м/с, \(\alpha=30^{\circ}\). Подставляем данные в уравнение и решаем его: \(E_{i}=B\cdot v\cdot l\cdot \sin \alpha=8\cdot 10^{-3}\cdot 5\cdot 0,25\cdot \sin 30^{\circ} = 0,005\) В \(=5\) мВ.

Ответ: 5

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

ЭДС индукции в проводнике \(E_{i}\), движущемся поступательно в магнитном поле, определяется по формуле:\(E_{i}=B\cdot v\cdot l\cdot \sin \alpha\), где \(B\) - индукция магнитного поля, \(v\) - скорость проводника, \(l\) - длина проводника, \(\alpha\) - угол между вектором скорости проводника и вектором магнитной индукции. Рассчитайте значение ЭДС в проводнике длиной \(2\) м, который движется в однородном магнитном поле индукцией \(0,1\) Тл со скоростью \(5\) м/с, перпендикулярной проводнику и линиям магнитной индукции.

Решение №22381: Для того, чтобы рассчитать величину ЭДС индукции в проводнике, необходимо воспользоваться уравнением:\(E_{i}=B\cdot v\cdot l\cdot \sin \alpha\) , где по условию задачи \(l=2\) м, \(B=0,1\) Тл, \(v=5\) м/с, \(\alpha=90^{\circ}\). Подставляем данные в уравнение и решаем его: \(E_{i}=B\cdot v\cdot l\cdot \sin \alpha=0,1\cdot 5\cdot 2\cdot \sin 90^{\circ}=1\) B.

Ответ: 1

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что энергия магнитного поля \(W\) определяется по формуле: \(W=\frac{L\cdot I^{2}}{2}\), где \(L\) - индуктивность катушки, \(I\) - сила тока. Определите индуктивность катушки, если при силе тока \(6,2\) А, ее магнитное поле обладает энергией \(0,32\) Дж.

Решение №22382: Решение задачи сводится к нахождению неизвестного значения \(L\) в уравнении: \(W=\frac{L\cdot I^{2}}{2}=> L=\frac{2\cdot W}{I^{2}}=\frac{2\cdot 0,32}{6,2^{2}}=0,017\) Гн.

Ответ: 0.017

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что поток внутри соленоида \(\Phi \) можно рассчитать по формуле: \(\Phi = N\cdot B\cdot S\), где \(N\) - число витков, \(B\) - индуктивность, \(S\) - площадь сечения соленоида. Также магнитный поток можно найти через индуктивность соленоида \(L\): \(\Phi =L\cdot I\), где \(I\) - сила тока. Определите значение индукции поля внутри соленоида площадью поперечного сечения \(10\) см2, если он содержит \(100\) витков, его индуктивность равна \(0,4\) мГн, а сила тока - \(0,5\) А.

Решение №22383: По условию задачи даны две формулы для расчета магнтного потока внутри соленоида. Для того, чтобы найти индукцию поля, необходимо приравнять данные формулы между собой. Получается уравнение, подставляем в него исходные данные и решаем: \(\Phi = N\cdot B\cdot S;\Phi =L\cdot I=> N\cdot B\cdot S=L\cdot I=> B=\frac{L\cdot I}{N\cdot S}=\frac{0,4\cdot 10^{-3}\cdot 0,5}{100\cdot 10\cdot 10^{-4}}=0,002\) Тл.

Ответ: 0, 002

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что энергия магнитного поля \(W\) определяется по формуле: \(W=\frac{L\cdot I^{2}}{2}\), где \(L\) - индуктивность катушки, \(I\) - сила тока. На катушке с сопротивлением \(R\) поддерживается постоянное напряжение \(U\) и сила тока \(I\) по закону Ома рассчитывается по формуле: \(I=\frac{U}{R}\). Оперделите, какая энергия выделится при размыкании цепи катушки с сопротивлением \(5\) Ом и индуктивностью \(25\) мГн , если на катушке поддерживается постоянное напряжение \(50\) В.

Решение №22384: Для того, чтобы найти энергию, которая выделится при размыкании цепи катушки, необходимо воспользоваться формулой: \(W=\frac{L\cdot I^{2}}{2}\). По условию задачи сказано, что \(L=25\) мГн. Значение силы тока \(I\) выражаем из закона Ома: \(I=\frac{U}{R}\), где \(U=50\) В, \(R=5\) Ом. Подставляем полученные данные в исходную формулу и получаем уравнение решения задачи: \(W=\frac{L\cdot I^{2}}{2}=\frac{L\cdot \frac{U}{R}^{2}}{2}=\frac{L\cdot U^{2}}{2\cdot R^{2}}=\frac{25\cdot 10^{-3}\cdot 50^{2}}{2\cdot 5^{2}}=1,25\) Дж.

Ответ: 1.25

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что энергия магнитного поля катушки \(W\) определяется по формуле: \(W=\frac{\Phi ^{2}}{2\cdot L}\), где \(\Phi \) - магнитный поток катушки, \(L\) - индуктивность. Определите при каком магнитном потоке энергия магнитного поля катушки равна \(0,8\) мДж, если индуктивность катушки \(0,1\) мГн.

Решение №22385: Решение задачи сводится к нахождению неизвестного значения магнитного потока \(\Phi \) в уравнении: \(W=\frac{\Phi ^{2}}{2\cdot L}=> \Phi =\sqrt{2\cdot 0,8\cdot 10^{-3}\cdot 0,1\cdot 10^{-3}}=4\cdot 10^{-4}\) Вб \(=0,4\)мВб.

Ответ: 0.4

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 2

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что уравнение ускорения равно двойной производной от уравнения колебаний: \(a={x}''\). Определите ускорение в момент времени, равный \(0,5\) с от начала отсчета, если уравнение гармонических колебаний имеет вид: \(x=4\cdot \sin (2\cdot \pi \cdot t)\) (м).

Решение №22386: Для того, чтоны определить ускорение в момент времения, необходимо взять двойную производную от уравнения гармонических колебаний: \(x=4\cdot \sin (2\cdot \pi \cdot t);{x}'=8\cdot \pi \cdot \cos (2\cdot \pi \cdot t);{x}''=-16\cdot \pi ^{2}\cdot \sin (2\cdot \pi \cdot t)\). Решение полученного уравнение даст значение ускорения: \(a=-16\cdot \pi ^{2}\cdot \sin (2\cdot \pi \cdot t)=-16\cdot \pi ^{2}\cdot \sin (2\cdot \pi \cdot 0,5)=0\) м/с2.

Ответ: 0

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 2

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Пружинный маятник совершает гармонические колебания по закону косинуса и уравнение этих колебаний имеет вид: \(x=A\cdot \cos \varphi \), где \(A\) - амплитуда колебаний, \(\varphi\) - фаза колебаний. Потенциальная энергия \(E_{p}\) рассчитывается по формуле: \(E_{p}=\frac{k\cdot x^{2}}{2}\), где \(k\) - жесткость пружины. Определите потенциальную энергия груза при фазе \(\frac{\pi }{3}\), если он подвешен на пружине , жесткость которой \(1\) кН/м и совершает косинусоидальные колебания с амплитудой \(2\) см.

Решение №22387: Решение задачи сводится к нахождение неизвестного значения потенциальной энергии \(E_{p} в уравнении: \(E_{p}=\frac{k\cdot x^{2}}{2}\). По условию задачи \(x=x=A\cdot \cos \varphi \), \(k=1\) кН/м, \(A=2\) см, \(\varphi =\frac{\pi }{3}\). Подставляем данные в исходное уравнение и решаем его: \(E_{p}=\frac{k\cdot x^{2}}{2}=\frac{k\cdot (A\cdot \cos \varphi)^{2}}{2}=\frac{1000\cdot 0,02^{2}\cdot \cos ^{2}\frac{3,14}{3}}{2}=0,05\) Дж.

Ответ: 0.05

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 2

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что уравнение ускорения равно двойной производной от уравнения колебаний: \(a={x}''\). Определите ускорение точки через \(3\) с от начала колебаний, если уравнение движения имеет вид: \(x=0,05\cdot \cos (\frac{2\cdot \pi \cdot t}{3})\) (м).

Решение №22388: Для того, чтоны определить ускорение в момент времения, необходимо взять двойную производную от уравнения гармонических колебаний:\({x}'=-0,05\cdot\frac{2\cdot \pi }{3} \cdot \sin (\frac{2\cdot \pi \cdot t}{3});{x}''=-0,05\cdot \frac{4\cdot \pi ^{2}}{9}\cdot \cos (\frac{2\cdot \pi \cdot t}{3})\). Решение полученного уравнение даст значение ускорения: \(a=-0,05\cdot \frac{4\cdot \pi ^{2}}{9}\cdot \cos (\frac{2\cdot \pi \cdot t}{3})=-0,05\cdot \frac{4\cdot \pi ^{2}}{9}\cdot \cos \cdot (\frac{2\cdot \pi \cdot 3}{3})=-0,22\)

Ответ: -0.22

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 2

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что полная механическая энергия \(E\) пружинного маятника рассчитывается по формуле: \(E=\frac{k\cdot A^{2}}{2}\), где \(k\) -жесткость пружины, \(A\) - амплитуда колебаний. Рассчитайте полную энергию груза массой \(0,2\) кг, если он колеблется на пружине жесткостью \(500\) Н/м с амплитудой \(10\) см.

Решение №22389: Для того, чтобы найти полную энергию груза, необходимо решить уравнение: \(E=\frac{k\cdot A^{2}}{2}\). По условию задачи \(m=0,2\) кг, \(k=500\) Н/м, \(A=10\) см. Подставляем данные в исходное уравнение и решаем его: \(E=\frac{k\cdot A^{2}}{2}=\frac{500\cdot 0,1^{2}}{2}=2,5\) Дж.

Ответ: 2.5

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 2

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что разность фаз волны \(\Delta \varphi \) в двух точках пространства определяется формулой: \(\Delta \varphi =\frac{2\cdot \pi \cdot \Delta l}{\lambda }\) , где \(l\) - расстояние на котором точки находятся друг от друга, \(\lambda\) - длина волны. А скорость распростронения колебаний \(v\) определяется как произведение длины волны \(\lambda\) на частоту колебаний \(\nu \): \(v=\lambda \cdot \nu \). Рассчитайте разность фаз волны в двух точках пространства, остоящих друг от друга на расстоянии \(20\) см и расположенных на прямой, совпадающей с направлением распространения волны, если волна с частотой \(5\) Гц распространяется в пространстве со скоростью \(3\) м/с.

Решение №22390: Для того, чтобы рассчитать разность потенциалов, воспользуемся уравнением: \(\Delta \varphi =\frac{2\cdot \pi \cdot \Delta l}{\lambda }\). По условию задачи \(\Delta l=20\) см. Значение \(\lambda \) выразим из формулы: \(v=\lambda \cdot \nu => \lambda =\frac{v}{\nu }\), где \(v=3\) м/с, \(\nu =5\) Гц. Подставим полученные данные в исходное уравнение и решим его: \Delta \varphi =\frac{2\cdot \pi \cdot \Delta l}{\lambda }=\frac{2\cdot \pi \cdot \Delta l}{\frac{v}{\nu }}=\frac{2\cdot \pi \cdot \Delta l\cdot \nu }{v}=\frac{2\cdot 3,14\cdot 0,2\cdot 5}{3}=2,09\) рад.

Ответ: 2.09

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что расстояние \(L\) рассчитывается по формуле: \(L=v\cdot t\), где \(t\) - время, а \(v\) - это скорость, которая определяется как произведение длины волны \(\lambda\) на частоту колебаний \(\nu \): \(v=\lambda \cdot \nu \). Частота колебаний \(\nu \) равна отношению числу всплесков \(N\) к времени \(\tau\): \(v=\frac{N}{\tau }\). Определите, как далеко от берега находилась лодка, если на озере в безветренную погоду с нее бросили тяжелый якорь и от места бросания якоря пошли волны. А человек, стоящий на берегу, заметил, что волна дошла до него через \(50\) с, расстояние между соседними гребнями волны \(0,5\) м, а за \(5\) с было \(20\) всплесков о берег.

Решение №22391: Расстояние от лодки до берега \(L\) будем находить по формуле: \(L=v\cdot t\). Значение скорости \( v\) выражаем через формулу: \(v=\lambda \cdot \nu \). Частоту колебаний выражаем формулой: \(v=\frac{N}{\tau }\). Подставим полученные данные в исходное уравнение: \(L=v\cdot t=\frac{\lambda \cdot N\cdot t}{\tau }=\frac{0,5\cdot 20\cdot 50}{5}=100\) м.

Ответ: 100

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что уравнение колебаний заряда конденсатора при колебаниях в контуре в общем виде имеет следующий вид: \(Q=Q_{max}\cdot \cos (\omega \cdot t)\), где \(Q_{max}\) - максимальное значение заряда конденсатора, \(\omega\) - циклическая частота колебаний. Частота колебаний в контуре \(\nu\) связана с циклической частотой колебаний формулой: \(\nu =\frac{\omega }{2\cdot \pi }\). Определите частоту электромагнитных колебаний в контуре, если изменение конденсатора в колебательном контуре происходит по закону: \(Q=10^{-6}\cdot \cos (5,024\cdot 10^{7}\cdot t)\)/

Решение №22392: Чтобы найти значение частоты колебаний в контуре \(\nu\) воспользуемся формулой: \(\nu =\frac{\omega }{2\cdot \pi }\). По условию задачи дано уравнение колебаний заряда конденсатора в общем виде и конкретное уравнение, описывающее изменение заряда конденсатора в колебательном контуре. Сравнивая два уравнения, делаем вывод, что циклическая частота колебаний \(\omega =5,024\cdot 10^{7}\cdot t\). Подставляем полученные данные в исходное уравнение и решаем его: \(\nu =\frac{\omega }{2\cdot \pi }=\frac{5,024\cdot 10^{7}\cdot t}{2\cdot 3,14}=8\cdot 10^{6}\) Гц \(=8\) МГц.

Ответ: 8

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что показатель преломления данной среды относительно вакуума называется абсолютным показателем преломления данной среды \(n\), его можно определить как отношение скорости света в вакууме \(c\), равной \(3 \cdot 10^{8}\) м/с, к скорости света в данной среде \(v\): \(n=\frac{c}{v}\). А скорость света в данной среде \(v\) равна произведению длины волны света в данной среде \( \lambda\) (при преломлении она меняется) на частоту света \(\nu \) (частота при переходе из одной среды в другую не изменяется), поэтому: \(v=\lambda \cdot \nu \). Определите длину волны монохроматического света с частотой \(1,5\cdot 10^{15}\) в пластинке, прозрачной для этого света и имеющий показатель преломления \(1,25\). Скорость света равна \(3\cdot 10^{8}\) м/с.

Решение №22393: По условию задачи дано, что показатель преломления данной среды равен: \(n=\frac{c}{v}\). Выражаем отсюда значение скорости света: \(v=\frac{c}{n}\). Также скорость света можно определить по формуле: \(v=\lambda \cdot \nu \). Приравниваем эти два выражения между собой и получаем уравнение с неизвестным искомым значением длины волны \(\lambda\): \(\frac{c}{n}=\lambda \cdot \nu => \lambda =\frac{c}{n\cdot \nu }=\frac{3\cdot 10^{8}}{1,25\cdot 1,5\cdot 10^{15}}=1,6\cdot 10^{-7}\) м \( =160\) нм.

Ответ: 160

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что закон преломления света выглядит следующим образом: \(n_{1}\cdot \sin \alpha =n_{2}\cdot \sin \beta \), где \(\alpha\) и \(\beta\) - угод падения и угол преломления, \(n_{1}\) и \(n_{2}\) - показатели преломления среды. Определите угол преломления луча света на границу стекло-воздух, если угол падения равен \(30^{\circ}\), показатель преломления стекла \(1,5\), а показатель преломления воздуха равен \(1\).

Решение №22394: Решение задачи сводится к нахождению неизвестного значения угла преломления \(\beta \) в уравнении: \( n_{1}\cdot \sin \alpha =n_{2}\cdot \sin \beta => sin \beta=\frac{n_{1}\cdot \sin \alpha }{n_{2}};\beta =\arcsin (\frac{n_{1}\cdot \sin \alpha }{n_{2}})=\arcsin (\frac{1,5\cdot \sin 30^{\circ}}{1})=48,6^{\circ}\).

Ответ: \(48,6^{\circ}\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Известно, что закон преломления света выглядит следующим образом: \(n_{1}\cdot \sin \alpha =n_{2}\cdot \sin \beta \), где \(\alpha\) и \(\beta\) - угод падения и угол преломления, \(n_{1}\) и \(n_{2}\) - показатели преломления среды. Определите под каким углом следует направить луч на поверхность стекла, чтобы угол преломления получился равным \(35^{\circ}\), если показатель преломления стекла \(1,5\), а показатель преломления воздуха равен \(1\).

Решение №22395: Решение задачи сводится к нахождению неизвестного значения угла преломления \(\alpha \) в уравнении: \(n_{1}\cdot \sin \alpha =n_{2}\cdot \sin \beta => sin \alpha =\frac{n_{2}\cdot \sin \beta }{n_{1}};\alpha =\arcsin (\frac{n_{2}\cdot \sin \beta }{n_{1}})=\arcsin (\frac{1,5\cdot \sin 35^{\circ}}{1})=59,4^{\circ}\)

Ответ: \(59,4^{\circ}\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Согласно формуле Планка, энергия фотона \(E\) пропорциональна частоте колебаний \(\nu \) и определяется следующим образом: \(E=h\cdot \nu, где \(h\) - это постоянная Планка, равная \(6,62\cdot 10^{-34}\) Дж*с. Также энергия фотона \(E\) связана с массой \(m\): \(E=m\cdot c^{2}\), где \(c\) - это скорость света, равная \(3\cdot 10^{8}\) м/с. Определите частоту колебаний световой волны, масса фотона которой равна \(3,31\cdot 10^{-36}\) кг.

Решение №22396: По условию дано, что энергия фотона \(E\) определяется по формуле: \(E=h\cdot \nu . Также энергия связана с массой и находится по формуле: \(E=m\cdot c^{2}\). Приравниваем два выражения и получаем уравнение с неизвестной искомой частотой колебаний: \(h\cdot \nu= m\cdot c^{2}=> \nu =\frac{m\cdot c^{2}}{h}=\frac{3,31\cdot 10^{-36}\cdot (3\cdot 10^{8})^{2}}{6,62\cdot 10^{-34}}=4,5\cdot 10^{14}\) Гц.

Ответ: \(4,5\cdot 10^{14}\)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема:

Задача в следующих классах:

Сложность задачи : 1

Задача встречается в следующей книге: коллектив портала kuzovkin.info

Согласно формуле Планка, энергия фотона \(E\) пропорциональна частоте колебаний \(\nu \) и определяется следующим образом: \(E=h\cdot \nu, где \(h\) - это постоянная Планка, равная \(6,62\cdot 10^{-34}\) Дж*с. Частота колебаний равна отношению скорости света \(c\) к длине волны \(\lambda \): \(\nu =\frac{c}{\lambda }\). Определите длину волны излучения, если энергия фотона равна \(3\) эВ, а скорость света \(с=3\cdot 10^{8}\) м/с.

Решение №22397: Для того, чтобы найти неизвестное значение длины волны, воспользуемся формулой: \(\nu =\frac{c}{\lambda }\). Скорость света \(с=3\cdot 10^{8}\)м/с, значение частоты \(\nu\) выразим из формулы: \(\nu=\frac{E}{h}\). Подставим полученные выражения в исходное уравнение и решаем его: \(\frac{E}{h}=\frac{c}{\lambda }=> \lambda =\frac{h\cdot c}{E}=\frac{6,62\cdot 10^{-34}\cdot 3\cdot 10^{8}}{3\cdot 1,6\cdot 10^{-19}}=414\cdot 10^{-19}\) м \(=414\) нм.

Ответ: 414

« 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 »