Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Найдите \(\lim_{n \to \propto} x_{n}\), если \(x_{n}= \frac{\sqrt{n^{2}+1}-n}{\sqrt{n^{3}+1}-n\sqrt{n}}\)

Решение №13735: \( \lim_{n \to \propto} \frac{\sqrt{n^{2}+1}-n}{\sqrt{n^{3}+1}-n\sqrt{n}}=\lim_{n \to \propto} \frac{\left ( n^{2}+1-n^{2} \right )\left ( \sqrt{n^{3}+1}+n\sqrt{n} \right )}{\left ( \sqrt{n^{2}+1}+n \right )\left ( n^{3}+1-n^{3} \right )}=\lim_{n \to \propto} \frac{n\left ( \sqrt{n+\frac{1}{n^{2}}}+\sqrt{n} \right )}{n\left ( 1+\frac{1}{n^{2}}+1 \right )}=+\propto \)

Ответ: +\propto

Найдите \(\lim_{n \to \propto} x_{n}\), воспользовавшись свойствами пределов, связанными с неравенствами и арифметическими действиями с пределами. \(x_{n}=\frac{2^{\frac{n}{2}}+\left ( n+1 \right )!}{n\left ( 3^{n}+n \right )!}\)

Решение №13747: \( \frac{2^{\frac{n}{2}}+\left ( n+1 \right )!}{n\left ( 3^{n}+n! \right )}=\frac{\frac{2^{\frac{n}{2}}}{\left ( n+1 \right )!}+1}{\frac{n*3^{n}}{\left ( n+1 \right )!}+\frac{n}{n+1}}\), а так как \(\lim_{n \to \propto}\frac{\frac{2^{\frac{n}{2}}}{\left ( n+1 \right )!}+1}{\frac{n*3^{n}}{\left ( n+1 \right )!}+\frac{n}{n+1}}=1, \lim_{n \to \propto}\frac{2^{\frac{n}{2}}+\left ( n+1 \right )!}{n\left ( 3^{n}+n! \right )}=1. \)

Ответ: 1

Установите сходимость к 0 последовательности \(x_{n}=\frac{n^{P}}{a^{n}}, a> 1, p\in N \)

Решение №13750: Способ 1. Если a> 1, то \(a=1+\alpha , где \alpha > 0\). Откуда \(a^{n}=\left ( 1+\alpha \right )^{n}> C_{n}^{p+1}*\alpha ^{p+1}\ при n> p. Пусть n> 2p. Тогда C_{n}^{p+1}=\frac{n\left ( n-1 \right )...\left ( n-p \right )}{\left ( p+1 \right )!}> \frac{n}{\left ( p+1 \right )!}\left ( \frac{n}{2} \right )^{p}\) (так как \(n-k> \frac{n}{2}\) при \(1\leqslant k\leqslant p\)). Отсюда следует, что \(0< \frac{n^{p}}{a^{n}}< \frac{2^{p}\left ( p+1 \right )!}{\alpha ^{p+1}*n}\), а следовательно, \(\lim_{n \to \propto} \frac{n^{p}}{a^{n}}=0\). ( Поскольку \(\frac{2^{p}\left ( p+1 \right )!}{\alpha ^{p+1}}\) не зависит от n, то \(\lim_{n \to \propto}\frac{2^{p}\left ( p+1 \right )!}{\alpha ^{p}*n}=0)\) Способ 2. Если \(x_{n}=\frac{n^{p}}{a^{n}}, a> 1 \frac{x_{n+1}}{x_{n}}=\frac{\left ( n+1 \right )^{p}*a^{n}}{a^{n+1}*n^{p}}=\frac{1}{a}\left ( 1+\frac{1}{n} \right )^{p}\rightarrow _{n \to \propto} \frac{1}{a} \frac{1}{a}< 1\). Следовательно, по лемме \(\lim_{n \to \propto} x_{n}=0\). Если \(x_{n}=\frac{\left ( 2n \right )!}{a^{n}}\left ( a> 1 \right ),то \forall n\in N x_{n}> 0 и \frac{x_{n+1}}{x_{n}}=\frac{\left ( 2n+2 \right )!*a^{n!}}{a^{\left ( n+1 \right )!}\left ( 2n \right )!}=\frac{2n+1}{a^{\left ( n-1 \right )n!}}*\frac{2n+2}{a^{n!}}\rightarrow _{n \to \propto} 0\) ( обе бесконечно малые при a> 1, то в силу леммы \)\lim_{n \to \propto} x_{n}=0\). Если \(x_{n}=\frac{4*7*10*...*\left ( 3n+1 \right )}{2*6*10*...*\left ( 4n+2 \right )}> 0\) и \(\forall n\in N \frac{x_{n+1}}{x_{n}}=\frac{3n+4}{4n+6}\rightarrow _{n \to \propto} \frac{3}{4}\), то в силу леммы \(\lim_{n \to \propto} x_{n}=0 \)

Ответ: NaN

Найдите \(\lim_{n \to \propto} n^{\frac{3}{2}}\left ( \sqrt{n+1} +\sqrt{n-1}-2\sqrt{n}\right )\)

Решение №13751: \(\lim_{n \to \propto} n^{\frac{3}{2}}\left ( \sqrt{n+1} +\sqrt{n-1}-2\sqrt{n}\right )=\lim_{n \to \propto}\frac{n^{\frac{3}{2}}\left ( 2n+2\sqrt{n^{2}-1} -4n\right )}{\left ( \sqrt{n+1} +\sqrt{n-1}-2\sqrt{n}\right )}=\lim_{n \to \propto}\frac{2n^{\frac{3}{2}}\left ( \sqrt{n^{2}-1}-n \right )}{\sqrt{n}\left ( \sqrt{1+\frac{1}{n}} +\sqrt{1-\frac{1}{n}}+2\right )}=\lim_{n \to \propto}\frac{-2n}{\left ( \sqrt{1+\frac{1}{n}} +\sqrt{1-\frac{1}{n}}+2 \right )n\left ( \sqrt{1-\frac{1}{n^{2}}+1} \right )}=\frac{-2}{4*2}=-\frac{1}{4} \)

Ответ: -\frac{1}{4}