Задачи

Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По сложности:

По авторам:

Упростить выражения: \( \left ( x^{1+\frac{1}{2\log _{4}x}}+8^{\frac{1}{3\log _{x^{2}}2}}+1 \right )^{1/2} \)

Решение №17710: ОДЗ: \( 0< x\neq 1 . \left ( x^{1+\frac{1}{2\log _{4}x}}+8^{\frac{1}{3\log _{x^{2}}2}}+1 \right )^{1/2}=\left ( x*x^{\frac{1}{\log _{2}x}}+2^{\frac{1}{\log _{x^{2}}2}}+1 \right )^{\frac{1}{2}}=\left ( x*x^{\log _{2}x}+2^{\log _{2}x^{2}}+1 \right )^{\frac{1}{2}}=\left ( 2x+x^{2}+1 \right )^{\frac{1}{2}}=\sqrt{\left ( x+1 \right )^{2}}=\left | x+1 \right |=x+1 \) ( с учетом ОДЗ: 0< x\neq 1) \)

Ответ: \( x+1 )\, где \( 0< x\neq 1 )\

Решить уравнения: \( \log _{\sqrt{x}}a*\log _{a^{2}}\frac{a^{2}}{2a-x}=1 \)

Решение №17711: ОДЗ: \( \left\{\begin{matrix} 0< a\neq 1, & & & \\ x\neq 2a, & & & \\ 0< x\neq 1 & & & \end{matrix}\right. \) Перейдем к основанию \( a \) Имеем \( \frac{\log _{a}a}{\log _{a}\sqrt{x}}*\frac{\log _{a}\frac{a^{2}}{2a-x}}{\log _{a}a^{2}}=1 \Leftrightarrow \log _{a}\left ( 2a-x \right )+\log _{a}x=2 \Leftrightarrow \log _{a}x\left ( 2a-x \right )=2, x\left ( 2a-x \right )=a^{2}, x^{2}-2ax+a^{2}=0, \left ( x-a \right )^{2}=0 \), откуда \( x=a \)

Ответ: \( x=a )\, где \( 0< a\neq 1 )\

Решить уравнения: \( \log _{a}y+\log _{a}\left ( y+5 \right )+\log _{a}0.02=0 \)

Решение №17712: ОДЗ: \( \left\{\begin{matrix} y> 0, & \\ y+5> 0 & \\ 0< a\neq 1 & \end{matrix}\right.\left\{\begin{matrix} y> 0 & \\ 0< a\neq 1 & \end{matrix}\right. \) Имеем \( log_{a}\left ( y\left ( y+5 \right )*0.02 \right )=0 ,0.02y^{2}+0.1y=1 , 0.02y^{2}+0.1y-1=0 \), откуда \( y_{1}=5; y_{2}=-10 \) не подходит по ОДЗ.

Ответ: \( y=5 0< a\neq 1)\

Постройте треугольник \(АВС\) по стороне \(АВ\), углу \(А\) и сумме сторон \(АС + СВ\) (рис. 51, а).

Решение №17713: Продолжим сторону \(АС\) треугольника \(АВС\) на отрезок \(CD\), равный стороне \(ВС\) (рис. 51, б). В треугольнике \(ABD\) известны стороны \(АВ\) и \(АD = АС + СВ\) и угол А между ними, поэтому его можно построить. Серединный перпендикуляр к стороне \(BD\) пересекает сторону \(AD\) в искомой точке \(С\).

Ответ: NaN

Постройте прямоугольный треугольник по гипотенузе и катету (рис. 52, а). Гипотенуза

Решение №17714: Сначала построим окружность, диаметром которой служит данная гипотенуза \(АВ\), а затем построим окружность с центром \(А\), радиус которой равен данному катету. Точки \(С_{1}\) и \(С_{2}\), в которых пересекаются построенные окружности (рис. 52, б), являются вершинами искомых треугольников \(АВС_{1}\) и \(АВС_{2}\)

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

На сторонах \(АВ\) и \(ВС\) квадрата \(ABCD\) отмечены точки \(Р\) и \(Q\) так, что \(ВР = BQ\), из точки \(В\) проведён перпендикуляр \(ВН\) к прямой \(СР\). Докажите, что угол \(DHQ\) прямой (рис. 50).

Решение №17715: Пусть прямая \(ВН\) пересекает прямую \(АD\) в точке \(F\) (рис. 133). Прямоугольные треугольники \(АВЕ\) и \(ВСР\) равны по катету и острому углу. Поэтому \(AF = ВР = BQ\). Следовательно, \(CDFQ\) прямоугольник. Все вершины этого прямоугольника лежат на окружности с диаметром \(FС\); на этой же окружности лежит точка \(Н\). Отрезок \(DQ \)также является диаметром этой окружности, поэтому угол \(DHQ\) прямой.

Ответ: NaN

Четыре точки \(А\), \(В\), \(С\) и \(D\) таковы, что отрезки \(AB\), \(ВС\), \(СD\) и \(DA\) равны (рис. 6). Докажите, что \(AC\perp BD\).

Решение №17716: Пусть точка \(О\) — середина отрезка \(АС\). Тогда \(AC\perp BO\) и \(AC\perp OD\).

Ответ: NaN

На одной стороне угла с вершиной \(О\) отмечены точки \(А\) и \(С\), на другой точки \(В\) и \(D\), отрезки \(AD\) и \(ВС\) пересекаются в точке \(Е\) (рис. 7). Докажите, что если \(АС = BD\) и \(ОА=ОВ\), то луч \(ОЕ\) является биссектрисой угла \(АОВ\).

Решение №17717: Треугольники \(OAD\) и \(ОВС\) равны по двум сторонам \((ОА = ОВ и OD = ОВ + BD =ОА + АС = ОС)\) и углу между ними. Треугольники \(ЕАС\) и \(EBD\) равны по стороне \((АС = BD)\) и прилежащим к ней углам (углы \(С\) и \(D\) являются равными углами треугольников \(ОАD\) и \(ОВС\), а углы \(А\) и \(В\) являются смежными с равными углами этих треугольников). Треугольники \(ОЕС\) и \(OED\) равны по трём сторонам (сторона \(ОЕ\) у них общая, равенство сторон \(ОС\) и \(OD\) следует непосредственно из условия, равенство сторон \(ЕС\) и \(ED\) следует из равенства треугольников \(ЕАС\) и \(EBD\)). Из равенства треугольников \(ОЕС\) и \(OED\) следует равенство углов \(СОЕ\) и \(DOE\).

Ответ: NaN

Внутри треугольника \(АВС\) отмечена точка \(О\) так, что луч \(ВО\) делит пополам углы \(АВС\) и \(АОС\) (рис. 8). Докажите, что этот треугольник равнобедренный.

Решение №17718: Докажите сначала, что треугольники \(ОВА\) и \(ОВС\) равны по стороне и прилежащим к ней углам.

Ответ: NaN

У звезды, изображённой на рисунке 9, равны углы с вершинами \(А\) и \(В\), углы с вершинами \(С\) и \(Е\), а также \(АС = ВЕ\). Докажите, что \(АD=ВD\).

Решение №17719: Пусть \(F\) и \(G\) — точки пересечения отрезка \(СЕ\) с отрезками \(DB\) и \(DA\) (рис. 72). Сначала докажите, что \(\Delta ACG = \Delta BEF\) (по стороне и прилежащим к ней углам), а затем докажите, что \(DF = DG\).

Ответ: NaN

На равных сторонах \(АВ\) и \(ВС\) треугольника \(АВС\) отмечены точки \(М\) и \(N\) так, что \(AN = СМ\) (рис. 10). Могут ли отрезки \(АМ\) и \(CN\) быть неравными?

Решение №17720: Проведите высоты \(АN_{1}\) и \(СМ_{1}\) и отметьте точку \(М\) на отрезке \(ВМ_{1}\) и точку \(N\) на отрезке \(CN_{1}\) так, что \(ММ_{1} = NN_{1}\) (рис. 78).

Ответ: Да.

На стороне \(ВС\) треугольника \(АВС\) отмечена точка \(Е\), а на биссектрисе \(BD\) — точка \(F\) так, что \(EF\parallel AC\) и \(AF = АD\) (рис. 57). Докажите, что \(АВ = ВЕ\).

Решение №17721: Треугольники \(АВF\) и \(ЕВF\) равны по стороне \(ВF\) и прилежащим к ней углам, поскольку \(\angle AFB = 180^{\circ} - \angle ADF = \angle BFE\).

Ответ: NaN

Точки D и Е лежат на продолжениях сторон \(АВ\) и \(АС\) треугольника \(АВС\) за точки В и С, биссектрисы углов \(DBC\) и \(ЕСВ\) пересекаются в точке О. Докажите, что биссектриса угла \(ВАС\) проходит через точку О.

Решение №17722: Точка \(О\) равноудалена от прямых \(DB\) и \(ВС\) и от прямых \(ЕС\) и \(СВ\), поэтому она равноудалена от прямых \(АВ\) и \(АС\). Луч \(ВО\) и точка \(С\) лежат по одну сторону от прямой \(АВ\), поэтому точки \(О\) и \(С\) лежат по одну сторону от прямой \(АВ\). Аналогично точки \(О\) и \(В\) лежат по одну сторону от прямой \(АС\). Следовательно, точка \(О\) лежит внутри угла \(ВАС\).

Ответ: NaN

На сторонах \(АВ\), \(ВС\) и \(СА\) равностороннего треугольника \(АВС\) отмечены точки \(К\), \(М\) и \(N\) так, что \(\angle MKB = \angle MNC\) и \(\angle KMB = \angle KNA\). докажите, что луч \(NB\) биссектриса угла \(KNM\)

Решение №17723: Пусть \(\angle MKB = \alpha\) и \(\angle KMB = \beta\). Тогда \(\alpha +\beta =120^{\circ}\) , поэтому \(\angle AKN = 180^{\circ}-60^{\circ}-\beta =\alpha\) и \(\angle CMN = \beta\) (рис. 117). Биссектрисы \(КВ\) и \(МВ\) внешних углов треугольника \(КМN\) пересекаются в точке \(В\), поэтому биссектриса угла \(KNM\) проходит через точку \(В\).

Ответ: NaN

Внутри равнобедренного треугольника \(АВС\) с основанием \(ВС\) и углом \(А\), равным \(80^{\circ}\), отмечена точка \(М\) так, что \(\angle MBC=30^{\circ}\) и \(\angle MCA=10^{\circ}\). Найдите угол \(МАВ\)

Решение №17724: Пусть \(О\) — точка пересечения прямой \(ВМ\) и биссектрисы угла \(А\) (рис. 120). Тогда \(\angle ACM = 10^{\circ}= \angle OCM\) и \(\angle COM = 60^{\circ} = \angle AOM\), поэтому \(М\) — точка пересечения биссектрис треугольника \(АСО\). Следовательно, \(\angle MAO = 20^{\circ}\) .

Ответ: 60

Углы \(В\) и \(С\) треугольника \(АВС\) равны \(70^{\circ}\) и \(50^{\circ}\) . На сторонах \(АВ\) и \(АС\) отмечены точки \(М\) и \(N\) так, что \(\angle MCB=40^{\circ}\) и \(\angle NBC=50^{\circ}\). Найдите угол \(NMC\)

Решение №17725: Пусть \(О\) точка пересечения прямых \(ВN\) и \(СМ\) (рис. 121). Углы \(В\) и \(С\) треугольника \(ВСО\) равны \(50^{\circ}\) и \(40^{\circ}\) , поэтому \(NB\perp CM\). Отметьте на отрезке \(СО\) точку \({M}'\) так, что \(О{M}'\) = \)ОМ\). К треугольнику \(NBC\) и точке \({M}'\) получите, что \(\angle {M}'NB=60^{\circ}\) . Поэтому \(\angle NMC = \angle N{M}'O=30^{\circ}\).

Ответ: 30

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, материальная точка. Система отсчета,

Задача в следующих классах: 7 класс 10 класс

Сложность задачи : 1

Задача встречается в следующей книге: Турчина Н. В. и др. Физика: 3800 задач для школьников и поступающих в вузы //М.: Дрофа. – 2000. – Т. 3.

Можно ли принять Землю за материальную точку при расчете расстояния от Земли до Солнца?

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, материальная точка. Система отсчета,

Задача в следующих классах: 7 класс 10 класс

Сложность задачи : 1

Задача встречается в следующей книге: Турчина Н. В. и др. Физика: 3800 задач для школьников и поступающих в вузы //М.: Дрофа. – 2000. – Т. 3.

Можно ли принять Землю за материальную точку при расчете пути, пройденного Землей по орбите вокруг Солнца за месяц?

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, материальная точка. Система отсчета,

Задача в следующих классах: 7 класс 10 класс

Сложность задачи : 1

Задача встречается в следующей книге: Турчина Н. В. и др. Физика: 3800 задач для школьников и поступающих в вузы //М.: Дрофа. – 2000. – Т. 3.

Можно ли принять Землю за материальную точку при расчете длины экватора Земли?

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, материальная точка. Система отсчета,

Задача в следующих классах: 7 класс 10 класс

Сложность задачи : 1

Задача встречается в следующей книге: Турчина Н. В. и др. Физика: 3800 задач для школьников и поступающих в вузы //М.: Дрофа. – 2000. – Т. 3.

Можно ли принять Землю за материальную точку при расчете скорости движения точки экватора при суточном вращении Земли вокруг оси?

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, материальная точка. Система отсчета,

Задача в следующих классах: 7 класс 10 класс

Сложность задачи : 1

Задача встречается в следующей книге: Турчина Н. В. и др. Физика: 3800 задач для школьников и поступающих в вузы //М.: Дрофа. – 2000. – Т. 3.

Можно ли принять Землю за материальную точку при расчете скорости движения Земли по орбите вокруг Солнца?

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, материальная точка. Система отсчета,

Задача в следующих классах: 7 класс 10 класс

Сложность задачи : 1

Задача встречается в следующей книге: Турчина Н. В. и др. Физика: 3800 задач для школьников и поступающих в вузы //М.: Дрофа. – 2000. – Т. 3.

Можно ли принять Землю за материальную точку при расчете движения спутника вокруг Земли?

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, материальная точка. Система отсчета,

Задача в следующих классах: 7 класс 10 класс

Сложность задачи : 1

Задача встречается в следующей книге: Турчина Н. В. и др. Физика: 3800 задач для школьников и поступающих в вузы //М.: Дрофа. – 2000. – Т. 3.

Можно ли принять Землю за материальную точку при расчете посадки самолета?

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, материальная точка. Система отсчета,

Задача в следующих классах: 7 класс 10 класс

Сложность задачи : 1

Задача встречается в следующей книге: Турчина Н. В. и др. Физика: 3800 задач для школьников и поступающих в вузы //М.: Дрофа. – 2000. – Т. 3.

Можно ли принять за материальную точку снаряд при расчете дальности полета снаряда?

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, материальная точка. Система отсчета,

Задача в следующих классах: 7 класс 10 класс

Сложность задачи : 1

Задача встречается в следующей книге: Турчина Н. В. и др. Физика: 3800 задач для школьников и поступающих в вузы //М.: Дрофа. – 2000. – Т. 3.

Можно ли принять за материальную точку снаряд при расчете формы снаряда, обеспечивающей уменьшение сопротивления воздуха?

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, материальная точка. Система отсчета,

Задача в следующих классах: 7 класс 10 класс

Сложность задачи : 1

Задача встречается в следующей книге: Турчина Н. В. и др. Физика: 3800 задач для школьников и поступающих в вузы //М.: Дрофа. – 2000. – Т. 3.

Можно ли принять за материальную точку железнодорожный состав длиной около 1 км при расчете пути, пройденного за несколько секунд?

Пока решения данной задачи,увы,нет...

Ответ: нет

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, материальная точка. Система отсчета,

Задача в следующих классах: 7 класс 10 класс

Сложность задачи : 1

Задача встречается в следующей книге: Турчина Н. В. и др. Физика: 3800 задач для школьников и поступающих в вузы //М.: Дрофа. – 2000. – Т. 3.

Можно ли принять за материальную точку железнодорожный состав длиной около 1 км при расчете пути, пройденного за несколько часов?

Пока решения данной задачи,увы,нет...

Ответ: да

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, материальная точка. Система отсчета,

Задача в следующих классах: 7 класс 10 класс

Сложность задачи : 1

Задача встречается в следующей книге: Турчина Н. В. и др. Физика: 3800 задач для школьников и поступающих в вузы //М.: Дрофа. – 2000. – Т. 3.

Поезд прибыл из Владивостока в Москву. Равные ли пути прошли при этом локомотив и хвостовой вагон? Можно ли в этой задаче рассматривать поезд как материальную точку?

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, материальная точка. Система отсчета,

Задача в следующих классах: 7 класс 10 класс

Сложность задачи : 1

Задача встречается в следующей книге: Турчина Н. В. и др. Физика: 3800 задач для школьников и поступающих в вузы //М.: Дрофа. – 2000. – Т. 3.

Поезд длиной \( l= 120\) м движется по мосту со скоростью \( v=18\) км/ч. За какое время поезд проедет мост, если длина моста \( s=480\) м? Можно ли поезд в этой задаче рассматривать как материальную точку?

Пока решения данной задачи,увы,нет...

Ответ: \(t=\frac{l+s}{v}=2\) мин; нельзя.

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, материальная точка. Система отсчета,

Задача в следующих классах: 7 класс 10 класс

Сложность задачи : 1

Задача встречается в следующей книге: Турчина Н. В. и др. Физика: 3800 задач для школьников и поступающих в вузы //М.: Дрофа. – 2000. – Т. 3.

Путь или перемещение мы оплачиваем в такси? В самолете? Ответ запишите в км через точку с запятой

Пока решения данной задачи,увы,нет...

Ответ: В такси – путь, в самолете – перемещение.

« 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 »