Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №17410: Центр вписанной окружности треугольника лежит на биссектрисе данного угла.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №17411: Искомая точка принадлежит окружностям, соответственно концентрическим данным.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №17412: Пусть \(O_{1}\) и \(O_{2}\) — центры окружностей радиусов \(R\) и \(r\). Задача сводится к построению прямоугольного треугольника по гипотенузе \(O_{1}O_{2}\) и катету \(R − r\) (рис. 165,а) или \(R + r\) (рис. 165,б).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №17413: Предположим, задача решена. Пусть построенная окружность с центром \(O_{2}\) касается данной прямой \(l\) в точке \(C\), а данной окружности с центром \(O_{1}\) — в данной на ней точке \(A\)
(рис. 170).
Первый способ. Пусть прямая \(AC\) вторично пересекает данную окружность в точке \(B\). Тогда касательная, проведенная к этой окружности в точке \(B\), параллельна прямой \(l\), а точки \(O_{1}, O_{2}\) и \(A\) лежат на одной прямой. Отсюда вытекает следующий способ построения. Проведем касательную к данной окружности, параллельную данной прямой \(l\). Пусть \(B\) — точка касания, а прямая \(AB\) пересекает прямую \(l\) в точке \(C\). Тогда центр \(O_{2}\) искомой окружности найдем как точку пересечения перпендикуляра к прямой \(l\), восставленного из точки \(C\), и прямой \(O_{1}A\).
Второй способ. Пусть касательная к данной окружности, проведенная через точку \(A\), пересекает данную прямую в точке \(M\). Тогда искомая окружность касается прямой \(AM\) в точке \(A\), а ее центр \(O_{2}\) лежит на биссектрисе угла \(AMC\) или на биссектрисе смежного с ним угла. Отсюда вытекает соответствующий способ построения.
Если данная окружность не имеет с прямой \(l\) общих точек и данная точка не лежит на перпендикуляре к данной прямой, проходящем через центр данной окружности, задача имеет два решения (внутреннее и внешнее касания).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №17415: Рассмотрим случай внешнего касания (рис. 173). Предположим, что окружности \(S_{1}, S_{2}\) и \(S_{3}\) построены. Пусть \(S_{1}\) и \(S_{2}\) касаются в точке \(C, S_{1}\) и \(S_{3}\) — в точке \(B, S_{2} и \(S_{3}\) — в точке \(A\). Пусть \(O_{1}, O_{2}\) и \(O_{3}\) — центры окружностей \( S_{1}, S_{2}\) и \(S_{3}\) соответственно. Тогда точки \(A, B\) и \(C\) лежат на сторонах треугольника \(O_{1}O_{2}O_{3}\), причем \(O_{1}B = O_{1}C, O_{2}C = O_{2}A, O_{3}A = O_{3}B\). Точки \(A, B\) и \(C\) являются точками касания вписанной окружности треугольника \(O_{1}O_{2}O_{3}\) с его сторонами.
Отсюда вытекает следующий способ построения. Строим описанную окружность треугольника \(ABC\) и проводим к ней касательные в точках \(A, B\) и \(C\). Точки пересечения этих касательных есть центры искомых окружностей. Если каждая из двух окружностей, касающихся между собой внешним образом, внутренне касается третьей окружности, то аналогично можно доказать, что точки их попарного касания являются точками касания прямых, содержащих стороны треугольника \(O_{1}O_{2}O_{3}\), с вневписанной окружностью этого треугольника.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №17416: Пусть \(N_{1}\) — точка, симметричная точке \(N\) относительно прямой \(l\) (рис. 210). Тогда для любой точки \(K\) этой прямой
\(MK + NK = MK + N_{1}K > MN_{1} = MP + PN_{1} = MP + PN\).
Равенство достигается в случае, когда точка \(K\) совпадает с точкой \(P\) пересечения прямых \(l\) и \(MN_{1}\).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №17417: Рассмотрите точки, симметричные точке \(M\) относительно сторон угла.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №17418: Рассмотрите точки, симметричные точкам \(M\) и \(N\) относительно сторон данного угла.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на арифметическую прогрессию повышенной сложности, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: 21
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на арифметическую прогрессию повышенной сложности, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: 8
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на арифметическую прогрессию повышенной сложности, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: -20100
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на арифметическую прогрессию повышенной сложности, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: \frac{1}{2};-\frac{7}{9}
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на арифметическую прогрессию повышенной сложности, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: \frac{1}{3};\frac{2}{3}
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на арифметическую прогрессию повышенной сложности, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: 810
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на арифметическую прогрессию повышенной сложности, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: 7
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на арифметическую прогрессию повышенной сложности, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: 82350
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на арифметическую прогрессию повышенной сложности, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: 70336
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на арифметическую прогрессию повышенной сложности, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: 2n+\frac{(4^{n}-1)(4^{n+1}+1)}{3\cdot 4^{n}}
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на арифметическую прогрессию повышенной сложности, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: 7
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на арифметическую прогрессию повышенной сложности, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: 41
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на арифметическую прогрессию повышенной сложности, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: 2^{n+1}(n-1)+2-0,5n(n+1)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на арифметическую прогрессию повышенной сложности, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: 3^{n+1}(n-1)+3
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: 120
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: {1;3;9, \frac{1}{9};\frac{7}{9};\frac{49}{9}}
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: {3;6;12;18, 18,75;11,25;6,75;2,25}
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: {5103, \frac{7}{81}}
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: {4;8;16, \frac{4}{25};-\frac{16}{25};\frac{64}{25}}
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: 2;4;8
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Пока решения данной задачи,увы,нет...
Ответ: {3;6;12, 27;18;12}