Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, параллельность и сумма углов треугольника, свойства прямоугольного треугольника. , медиана прямоугольного треугольника,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, параллельность и сумма углов треугольника, свойства прямоугольного треугольника. , медиана прямоугольного треугольника,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: {30,60,90}
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, точка. Прямая. Луч,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17232: Биссектриса \(AD\) делит угол \(А\) пополам, поэтому \(\angle EAD = \angle DAC\). Накрест лежащие углы \(\angle DAC\) и \(\angle EDA\) равны. Следовательно, \(\angle EAD = \angle EDA\). Таким образом, треугольник \(ADE\) равнобедренный и \(АЕ = ED\).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, точка. Прямая. Луч,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17233: Проведём через некоторую точку прямые, параллельные данным прямым. Эти прямые разделяют плоскость на 5 пар вертикальных углов, поэтому угол между некоторыми двумя из этих прямых не превосходит \(\frac{360^{\circ}}{10}=36^{\circ}\). Прямые, параллельные этим двум прямым, тоже образуют угол, не превосходящий \(36 ^{\circ}\).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, точка. Прямая. Луч,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17234: Сначала проведём перпендикуляр \(АН\) к прямой а, а затем через точку \(А\) проведём перпендикуляр к прямой \(АН\) (рис. 56). При пересечении прямой а и построенной прямой секущей \(АН\) образуются прямые углы, поэтому эти прямые параллельны.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, точка. Прямая. Луч,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17235: Прямые, проходящие через вершину угла, образованного данными прямыми, и образующие с этими прямыми равные углы, — это биссектрисы углов, образованных данными прямыми. Поэтому искомая прямая проходит через данную точку параллельно одной из биссектрис. Задача имеет два решения.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, точка. Прямая. Луч,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17236: Возьмите две параллельные прямые \(а\) и \(b\) и две прямые, которые пересекают их и сами пересекаются в точке, не лежащей на прямых \(а\) и \(b\).
Ответ: Да.
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, точка. Прямая. Луч,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17237: Возьмите три параллельные прямые и прямую, их пересекающую
Ответ: Да.
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, точка. Прямая. Луч,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17238: Проведите две прямые через точку на одной из параллельных прямых
Ответ: Да.
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, точка. Прямая. Луч,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17239: См. рис. 146.
Ответ: Да.
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, начальные тригонометрические сведения, точка. Прямая. Луч,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17240: Возьмите три попарно пересекающиеся прямые и проведите параллельно каждой из них две прямые.
Ответ: Да.
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, параллельность и сумма углов треугольника, свойства и признаки параллельности двух прямых,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17241: Треугольники \(0BD\) и \(ОСЕ\) равнобедренные.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, параллельность и сумма углов треугольника, свойства и признаки параллельности двух прямых,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17242: Треугольники \(ОВР\) и \(OCQ\) равнобедренные.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, параллельность и сумма углов треугольника, свойства и признаки параллельности двух прямых,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17243: Треугольники \(АВС\) и \(ABD\) равнобедренные.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, параллельность и сумма углов треугольника, свойства и признаки параллельности двух прямых,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17244: Пусть точка \(О\) — точка пересечения указанных биссектрис. Тогда треугольники \(ОМВ\) и \(ONC\) равнобедренные.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, параллельность и сумма углов треугольника, свойства и признаки параллельности двух прямых,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17245: Прямая, проходящая через вершину \(А\) параллельно стороне \(ВС\), разделяет внешний угол на углы, равные углам \(В\) и \(С\).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, параллельность и сумма углов треугольника, свойства и признаки параллельности двух прямых,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17246: Треугольники \(АСЕ\) и \(СAD\) равны по стороне и прилежащим к ней углам. Поэтому равны их высоты, проведённые к стороне \(АС\). Следовательно, \(ED\parallel АС\).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, параллельность и сумма углов треугольника, свойства и признаки параллельности двух прямых,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17247: Совместите стороны \(АВ\) и \(А_{1}В_{1}\) данных треугольников так, чтобы точки \(С\) и \(С_{1}\) лежали по одну сторону от прямой \(АВ\). Если прямые \(CD\) и \(С_{1}D_{1}\) совпадают, то точки \(С\) и \(С_{1}\) тоже совпадают. Если же эти прямые не совпадают, то они параллельны. В таком случае угол \(\alpha\) (рис. 147) является внешним углом треугольника с углом \(\beta\) , а угол \(\beta\) является внешним треугольником углом \(\alpha\). Поэтому \(\alpha > \beta\) и \(\beta > \alpha\) , чего не может быть.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,
Задача в следующих классах: 7 класс
Сложность задачи : 1
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, параллельность и сумма углов треугольника, свойства и признаки параллельности двух прямых,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17249: Прямые \(a\) и \(b\) могут содержать стороны равнобедренного треугольника, а секущая его основание.
Ответ: Нет.
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, параллельность и сумма углов треугольника, свойства и признаки параллельности двух прямых,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17250: Прямые \(а\) и \(b\) перпендикулярны секущей
Ответ: Да.
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, параллельность и сумма углов треугольника, свойства и признаки параллельности двух прямых,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17251: Пусть любая прямая, пересекающая прямую \(a\), пересекает и прямую \(b\). Предположим, что прямые \(a\) и \(b\) пересекаются в некоторой точке \(A\). Проведем через точку прямой \(a\), отличную от точки \(A\) , прямую, параллельную прямой \(b\). Эта прямая пересекает прямую \(a\) и не пересекает прямую \(b\).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, параллельность и сумма углов треугольника, свойства и признаки параллельности двух прямых,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17252: Проведем высоту \(AH\) (рис. 148). Пусть для определенности точка \(M\) лежит на окружности с диаметром \(AB\). Тогда угол \(AMB\) прямой и прямоугольные треугольники \(ABM\) и \(BAN\) равны по гипотенузе и острому углу.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, параллельность и сумма углов треугольника, свойства и признаки параллельности двух прямых,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17253: Пусть прямая, проходящая через точку \(М\) параллельно прямой \(АС\), пересекает прямую \(АВ\) в точке \(Р\) (рис. 149). Тогда \(\angle CNM = \angle MAN = \angle PМА\). В треугольниках \(MNC\) и \(АМР\), помимо углов \(N\) и \(М\), равны также углы \(С\) и \(Р\), поэтому равны и углы \(М\) и \(А\). Следовательно, эти треугольники равны по стороне (\(МN = АM\)) и прилежащим к ней углам, поэтому \(CN = РМ = ВМ\).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, параллельность и сумма углов треугольника, свойства и признаки параллельности двух прямых,
Задача в следующих классах: 7 класс
Сложность задачи : 3
Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.
Решение №17254: Рассмотрим точку \(К\), в которой пересекаются высота \(АD\) и прямая, проходящая через точку \(Н\) параллельно стороне \(ВС\), и покажем, что луч \(ВК\) - биссектриса угла \(В\) (рис. 150). Действительно, прямоугольные треугольники \(АНК\) и \(СВН\) равны по гипотенузе и острому углу, поэтому \(НК = НВ\), а значит, \(\angle HBK = \angle HКВ = \angle КВС\).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Геометрические места точек (ГМТ), свойства биссектрисы как ГМТ,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Геометрические места точек (ГМТ), свойства биссектрисы как ГМТ,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Геометрические места точек (ГМТ), свойства биссектрисы как ГМТ,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №17257: Пусть биссектрисы \(АD\) и \(ВЕ\) треугольника \(АВС\) пересекаются в точке \(О\). Тогда точка \(О\) равноудалена от прямых \(АВ\) и \(АС\) и от прямых \(ВА\) и \(ВС\), поэтому она равноудалена от прямых \(СА\) и \(СВ\). При этом точка \(О\) лежит внутри треугольника \(АВС\). Следовательно, она лежит на биссектрисе треугольника, проведённой из вершины \(C\).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Геометрические места точек (ГМТ), свойства биссектрисы как ГМТ,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Решение №17258: Точка \(М\) лежит на биссектрисе угла \(А\) треугольника \(АВС\), а точка \(N\) лежит на биссектрисе угла \(А\) треугольника \(АВ_{1}С_{1}\) поэтому точки \(М\) и \(N\) лежат на биссектрисе угла \(ВАС\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Геометрические места точек (ГМТ), свойства биссектрисы как ГМТ,
Задача в следующих классах: 7 класс
Сложность задачи : 2
Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.
Пока решения данной задачи,увы,нет...
Ответ: NaN