Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15843: ОДЗ: \( 0< x\neq 1 \) Перепишем уравнение в виде \( \left ( 3^{\log _{3}} \right )^{\log _{3}}+x^{\log _{3}}=162\Leftrightarrow x^{\log _{3}}+x^{\log _{3}}=162\Leftrightarrow x^{\log _{3}}=81\Leftrightarrow \log _{3}^{2}x=4 \) Тогда \( \left ( \log _{3}x \right )_{1}=-2 \), или \( \left ( \log _{3}x \right )_{2}=2 \), откуда \( x_{1}=\frac{1}{9}, x_{2}=9 \)
Ответ: \( \frac{1}{9}; 9 )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15844: ОДЗ: \( x> 0 \) Перейдем к основанию 3. Тогда \( \left | 2\log _{3}x-2 \right |-\left | \log _{3}x-2 \right |=2 \) Раскрывая модули получим три случая: \( \left\{\begin{matrix} \log _{3}x< 1, & & \\ -2\log _{3}x+2+\log _{3}x-2=2 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} \log _{3}x< 1, & & \\ \log _{3}x=-2 & & \end{matrix}\right. \Rightarrow x_{1}=3^{-2}=\frac{1}{9}; \left\{\begin{matrix} 1\leq \log _{3}x< 2, & & \\ 2\log _{3}x-2+\log _{3}x+2=2 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 1\leq \log _{3}x< 2, & & \\ \log _{3}x=2 & & \end{matrix}\right. \log _{3}x=2 \), не подходит так как \( \log _{3}x< 2 . \left\{\begin{matrix} \log _{3}x\geq 2, & & \\ 2\log _{3}x-2-\log _{3}x+2=2 & & \end{matrix}\right. \left\{\begin{matrix} \log _{3}x\geq 2, & & \\ \log _{3}x=2 & & \end{matrix}\right. \Rightarrow x_{2}=3^{2}=9 \)
Ответ: \( \frac{1}{9}; 9 )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15845: ОДЗ: \( \left\{\begin{matrix} 0< a\neq 1, & & \\ 0< x\neq 1. & & \end{matrix}\right. \) Перейдем к основанию \( a \)Получаем \( \frac{3\log_{a}x-2}{\log_{a}^{2}x}=2\log_{a}x-3 \Leftrightarrow 2\log_{a}^{3}x-3\log_{a}^{2}x-3\log_{a}x+2=0 \), т.к. \( \log_{a}x\neq 0 \) Далее имеем \( 2\left ( \log_{a}^{3}x \right )-3\log_{a}x\left ( \log_{a}x+1 \right )=0 \Leftrightarrow 2\left ( \log_{a}x+1 \right \)left ( \log_{a}^{2}x-\log_{a}x+1 \right )-3\log_{a}x\left ( \log_{a}x+1 \right )=0 \Leftrightarrow \left ( \log_{a}x+1 \right \)left ( 2\log_{a}^{2}x-5\log_{a}x+2 \right )=0 \), откуда \( \log_{a}x+1=0 \), или \( 2\log_{a}^{2}x-5\log_{a}x+2=0 \) Из первого уравнения \( \log_{a}x=-1, x_{1}=\frac{1}{a} \) Из второго уравнения \( \log_{a}x=\frac{1}{2} \), или \( \log_{a}x=2 \), откуда \( x_{2}=\sqrt{a}, x_{3}=a^{2} \)
Ответ: \( \frac{1}{a}; \sqrt{a}; a^{2} )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15846: \( \log _{\sqrt{3}}\sqrt[6]{a}=\frac{1}{6}*2\log _{3}a=\frac{1}{3\log _{a}3}= \frac{1}{\log _{a}27} = \frac{1}{b} \)
Ответ: \( \frac{1}{b} )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15847: ОДЗ: \( \left\{\begin{matrix} x-y> 0 & & & \\ x+y> 0 & & & \\ 0< xy\neq 1 & & & \end{matrix}\right. \) Имеем \( \left\{\begin{matrix} x-y=xy & & \\ x+y=1 & & \end{matrix}\right. \Rightarrow y=1-x, x-\left ( 1-x \right )-x\left ( 1-x \right )=0, x^{2}+x-1=0 \), откуда \( x_{1}=\frac{-1-\sqrt{5}}{2}, x_{2}=\frac{-1+\sqrt{5}}{2}, y_{1}=\frac{3+\sqrt{5}}{2}, y_{2}=\frac{3-\sqrt{5}}{2} \) Тогда с учетом ОДЗ имеем \( x=\frac{-1+\sqrt{5}}{2}, y=\frac{3-\sqrt{5}}{2} \)
Ответ: \( \frac{-1+\sqrt{5}}{2}; \frac{3-\sqrt{5}}{2} )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15848: ОДЗ: \( 0< x\neq 1 \) Из условия имеем \( \log _{2}3+\log _{2}x=x^{\frac{\log _{3}4}{\log _{3}x}} \Leftrightarrow \log _{2}3+\log _{2}x=x^{\log _{x}4} \Rightarrow \log _{2}3+\log _{2}x=4, \log _{2}3x=4 \), откуда \( 3x=16, x=\frac{16}{3} \)
Ответ: \( \frac{16}{3} )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15849: ОДЗ: \( x-4> 0, x> 4 \) Решая это уравнение как биквадратное относительно \( \log _{2}\left ( x-4 \right ) \), имеем \( \left ( \log _{2}\left ( x-4 \right ) \right )_{1}=-2; \left ( \log _{2}\left ( x-4 \right ) \right )_{2}=2; \left ( \log _{2}\left ( x-4 \right ) \right )_{3}=-3; \left ( \log _{2}\left ( x-4 \right ) \right )_{4}=3 \), откуда \( x_{1}=\frac{17}{4}, x_{2}=8, x_{3}=\frac{33}{8}, x_{4}=12 \)
Ответ: \( \frac{17}{4}, \frac{33}{8}, 8, 12 )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15850: \( \log _{30}8=\frac{\log _{2}8}{\log _{2}30}=\frac{3}{\log _{2}\left ( 2*5*3 \right )}=\frac{3}{1+\log _{2}5+\log _{2}3} . \lg _{5}=\frac{\log _{2}5}{\log _{2}10}=\frac{\log _{2}5}{\log _{2}\left ( 2*5 \right )}=\frac{\log _{2}5}{1+\log _{2}5}=a; \log _{2}5=\frac{a}{1-a}. \lg _{3}=\frac{\log _{2}5}{\log _{2}10}=\frac{\log _{2}3}{\log _{2}\left ( 2*5 \right )}=\frac{\log _{2}3}{1+\log _{2}5}=\frac{\log _{2}3}{1+\frac{1}{1-a}}=\frac{\left (1-a \right \)log _{2}3}{1}=b; \log _{2}3=\frac{b}{1-a} \) Таким образом, \( \log _{30}8=\frac{3}{1+\frac{a}{1-a}+\frac{b}{1-a}}=\frac{3\left ( 1-a \right )}{1+b} \)
Ответ: \( \frac{3\left ( 1-a \right )}{1+b} )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15851: ОДЗ: \( 3-4x^{2}> 0 \Leftrightarrow -\frac{\sqrt{3}}{2}< x< \frac{\sqrt{3}}{2} \) Из условия \( 5^{\log _{5}\left ( 3-4x^{2} \right )}+1.5x\log _{2^{-3}}2^{2}=0 \Leftrightarrow 3-4x^{2}-x=0 \Leftrightarrow 4x^{2}+x-3=0 \), откуда \( x_{1}=-1, x_{2}=\frac{3}{4}; x_{1}=-1 \) не подходит по ОДЗ.
Ответ: \( \frac{3}{4} )
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15852: ОДЗ: \( x^{2}-4\geq 0\Leftrightarrow x\epsilon \left ( -\infty ; -2 \right ]\cup \left [ 2; \infty \right ) \) Запишем уравнение в виде \( 2^{x+\sqrt{x^{2}-4}}-\frac{5}{2}*2^{\frac{x+\sqrt{x^{2}-4}}{2}}-6=0 \) Решая его как квадратное относительно \( 2^{\frac{x+\sqrt{x^{2}-4}}{2}} \), имеем \( 2^{\frac{x+\sqrt{x^{2}-4}}{2}}=-\frac{3}{2} \) (нет решений), или \( 2^{\frac{x+\sqrt{x^{2}-4}}{2}}=2^{2} \Rightarrow \frac{x+\sqrt{x^{2}-4}}{2}=2, \sqrt{x^{2}-4}=4-x \Leftrightarrow \left\{\begin{matrix} x^{2}-4=16-8x+x^{2}, & & \\ 4-x\geq 0, & & \end{matrix}\right. \), откуда \( x=\frac{5}{2} \)
Ответ: \( \frac{5}{2} )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15853: Имеем \( \left ( \frac{3}{5} \right )^{x}\left ( \frac{25}{9} \right )^{-2x^{2}+24}=\left ( \frac{3}{5} \right )^{-2x^{2}+x+24}=\left ( \frac{3}{5} \right )^{9}, -2x^{2}+x+24=9, 2x^{2}-x-15= 0 \), откуда \( x_{1}=-\frac{5}{2}, x_{2}=3 \)
Ответ: \( -\frac{5}{2}, 3 )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15854: ОДЗ: \( \left\{\begin{matrix} x\neq 1 & & \\ x\neq \frac{7}{3} & & \end{matrix}\right.\) Перепишем уравнение в виде \( 2^{\frac{3x-9}{3x-7}}*2^{-\frac{3x-1}{3x-3}}=2^{0}, 2^{\frac{3x-9}{3x-7}-\frac{3x-1}{3x-3}}=2^{0} \), откуда \( \frac{3x-9}{3x-7}-\frac{3x-1}{3x-3}=0\Rightarrow x=\frac{5}{3} \)
Ответ: \( \frac{5}{3} )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15855: ОДЗ: \( \left\{\begin{matrix} 1-x> 0, & & \\ 1-x\neq 1, 0\neq x< 1 & & \end{matrix}\right \) Из условия \( \log _{1-x}\frac{3}{2}=0.5\Leftrightarrow \frac{3}{2}=\sqrt{1-x}\Rightarrow \frac{9}{4}=1-x \), откуда \( x=-\frac{5}{4} \)
Ответ: \( -\frac{5}{4} )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15856: ОДЗ: \( 0< x\neq 1 \) Из условия \( 5^{\frac{1}{x-\sqrt{x}}}*5^{-\frac{1}{\sqrt{x}}}=5^{\frac{2}{3}}, 5^{\frac{1}{x-\sqrt{x}}-\frac{1}{\sqrt{x}}}=5^{ \frac{ 2}{ 3}} \) Отсюда \( \frac{1}{x-\sqrt{x}}-\frac{1}{\sqrt{x}}=\frac{2}{3}, 2\left ( \sqrt{x} \right )^{2}+\sqrt{x}-6=0 \) Решив это уравнение как квадратное относительно \( \sqrt{x} \), Найдем \( \sqrt{x}=-2, \varnothing \); или \( \sqrt{ x}= \frac{ 3}{ 2} \), откуда \( x= \frac{9}{ 4} \)
Ответ: \( \frac{9}{4} )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15857: ОДЗ: \( 0< x\neq 1 \) Логарифмируя второе уравнение системы по основанию 4, имеем \( \log _{4}x^{y}, \log _{4}4^{6}. y\log _{4}x=6 \) Отсюда \( \left\{\begin{matrix} y=1+\log _{4}x, & & \\ y\log _{4}x=6 & & \end{matrix}\right.\Rightarrow \left ( 1+\log _{4}x \right \)log _{4}x=6, \log _{4}^{2}x+\log _{4}x-6=0 \), откуда, решая это уравнение как квадратное относительно \( \log _{4}x \), найдем \( \left ( \log _{4}x \right )_{1}=-3, \left ( \log _{4}x \right )_{2}=2, x_{1}=\frac{1}{64}, x_{2}=16 \) Тогда \( y_{1}=-2, y_{2}=3\)
Ответ: \( \left ( \frac{1}{64}; -2 \right ), \left ( 16; 3 \right ) )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15858: \( \log _{2}2x^{2}+\log _{2}x*x^{\log _{x}\left ( \log _{2}x+1 \right )}+\frac{1}{2}\log _{4}^{2}x^{4}+2^{-3\log _{1/2}\log _{2}x}=\log _{2}2+\log _{2}x^{2}+\log _{2}x*\left ( \log _{2}x+1 \right )+2\log _{2}^{2}x+2^{\log _{2}\log _{2}^{3}x}=1+2\log _{2}x+\log _{2}^{2}x+\log _{2}x+2\log _{2}^{2}x+\log _{2}^{3}x=\log _{2}^{3}x+3\log _{2}^{2}x+3\log _{2}x+1=\left ( \log _{2}x+1 \right )^{3} \)
Ответ: \( \left ( \log _{2}x+1 \right )^{3} )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15859: ОДЗ: \( 0< \sin x< 1 \) Так как \( 1-\cos 2x=2\sin ^{2}x \), то имеем \( 3\log _{2}^{2}\sin x+\log _{2}2\sin ^{2}x-2=0 \Leftrightarrow 3\log _{2}^{2}\sin x+2\log _{2}\sin x-1=0 \) Решая это уравнение как квадратное относительно \( \log _{2}\sin x \), получим \( \log _{2}\sin x=\frac{1}{3} \), или \( \log _{2}\sin x=-1 \), откуда \( \sin x=\sqrt[3]{2} \) (нет решений), или \( \sin x=\sqrt[1]{2} \) Тогда \( x=\left ( -1 \right )^{n}\frac{\pi }{6}+\pi n, n\epsilon Z \)
Ответ: \( \left ( -1 \right )^{n}\frac{\pi }{6}+\pi n )\, \( n\epsilon Z )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15860: Разделив второе уравнение заданной системы на первое, получим \( \frac{3^{x}*4^{y}}{2^{x}*3^{y}}=\frac{12}{6}, \frac{3^{x-y}}{2^{x-2y}}=2, 3^{x-y}=2^{1+x-2y} \) Это равенство возможно, когда \( \left\{\begin{matrix} x-y=0, & & \\ 1+x-2y=0 & & \end{matrix}\right. \Rightarrow x=y, 1+y-2y=0, y=1 \) Тогда \( x=y=1 \)
Ответ: \( \left ( 1; 1 \right ) )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15861: ОДЗ: \( \left\{\begin{matrix} x> 0 & & \\ y+x\neq 0 & & \end{matrix}\right. \) Из первого уравнения системы \( 3^{y+2x}=3^{4}, y+2x=4, y=4-2x \) Из второго уравнения системы \( \lg \frac{\left ( y+x \right )^{2}}{x}=\lg 9 \), откуда \( \frac{\left ( y+x \right )^{2}}{x}=9 \) Тогда исходная система приобретает вид \( \left\{\begin{matrix} y=4-2x & & \\ \left ( y+x \right )^{2}=9x & & \end{matrix}\right.\Rightarrow x^{2}-17x+16=0 \), откуда \( x_{1}=1, x_{2}=16 \) Тогда \( y_{1}=2, y_{2}=-28 \)
Ответ: \( \left ( 1; 2 \right ), \left ( 16; -28 \right ) )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15862: ОДЗ: \( \left\{\begin{matrix} x> 0, & & \\ y> 0. & & \end{matrix}\right. \) Имеем \( \left\{\begin{matrix} xy=36, & & \\ x+y=20, & & \end{matrix}\right. \), откуда \( \left\{\begin{matrix} x_{1}=2, & & \\ y_{1}=18; & & \end{matrix}\right. \left\{\begin{matrix} x_{2}=18, & & \\ y_{2}=2. & & \end{matrix}\right.
Ответ: \( \left ( 2; 18 \right ),\left ( 18; 2 \right ) )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15863: ОДЗ: \( \left\{\begin{matrix} x> 0 & & \\ y> 0 & & \end{matrix}\right. \) Из первого уравнения системы имеем \( 3^{2\sqrt{x}-\sqrt{y}}=3^{4}, 2\sqrt{x}-\sqrt{y}=4, \sqrt{y}=2\sqrt{x}-4 \) Из второго уравнения системы получим \( \sqrt{xy}=30, \sqrt{x}*\sqrt{y}=30 \) Система принимает вид\( \left\{\begin{matrix} \sqrt{y}=2\sqrt{x}-4 & & \\ \sqrt{x}*\sqrt{y}=30 & & \end{matrix}\right.\Rightarrow \left ( \sqrt{x} \right )^{2}-2\sqrt{x}-15=0 \), откуда \( \sqrt{x}=5 \), или \( \sqrt{x}=-3 \), (не подходит). Тогда \( \sqrt{y}=6 \) Следовательно, \( x=25, y=36 \)
Ответ: \( \left ( 25; 36 \right ) )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15864: Перепишем систему уравнений в виде \( \left\{\begin{matrix} \left ( 3^{x}-2^{y/2} \right \)left ( 3^{x}+2^{y/2} \right )=725, & & \\ 3^{x}-2^{y/2}=25 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 3^{x}+2^{y/2}=29, & & \\ 3^{x}-2^{y/2}=25 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 3^{x}=27, & & \\ 2^{y/2}=2, & & \end{matrix}\right. \), откуда \( \left\{\begin{matrix} x=3, & & \\ y=2. & & \end{matrix}\right. \)
Ответ: \( \left ( 3; 2 \right ) )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15865: ОДЗ: \( \left\{\begin{matrix} 0< x\neq 1, & & & \\ y> 0, & & & \\ \log _{1/9}\frac{x}{y}> 0\Rightarrow 0< \frac{x}{y}< 1 & & & \end{matrix}\right. \) Из первого уравнения системы \( xy=x^{4} \) или с учетом ОДЗ \( y=x^{3} \) Из второго уравнения имеем \( \log _{1/9}\frac{x}{y}=1, \frac{x}{y}=\frac{1}{9} \) Исходная система переписывается в виде \( \left\{\begin{matrix} y=x^{3} & & \\ \frac{x}{y}=\frac{1}{9} & & \end{matrix}\right. \Rightarrow \frac{x}{x^{3}}=\frac{1}{9} \), откуда с учетом с ОДЗ \( x=3, y=27 \)
Ответ: \( \left ( 3; 27 \right ) )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15866: ОДЗ: \( \left\{\begin{matrix} x-2y> 0, & & \\ 3x+2y> 0. & & \end{matrix}\right. \) Имеем \( \left\{\begin{matrix} 2^{3+\frac{x-y}{2}}=2^{3-y}, & & \\ \log _{3}\left ( x-2y \right \)left ( 3x+2y \right )=3 & & \end{matrix}\right. \Rightarrow \left\{\begin{matrix} 3+\frac{x-y}{2}=3-y, & & \\ \left ( x-2y \right \)left ( 3x+2y \right )=27, & & \end{matrix}\right. \left\{\begin{matrix} x=-y, & & \\ y^{2}=9 & & \end{matrix}\right. \), откуда, учитывая ОДЗ, получаем \( x=3 y=-3 \)
Ответ: \( \left ( 3; -3 \right ) )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15867: Из условия \( \left ( 2^{\frac{x+y}{6}} \right )^{2}+2^{\frac{x+y}{6}}-6=0 \) Решая это уравнение как квадратное относительно \( 2^{\frac{x+y}{6}} \), имеем \( 2^{\frac{x+y}{6}}=-3, \varnothing \); или \( 2^{\frac{x+y}{6}}=2 \), откуда \( \frac{x+y}{6}=1, x+y=6 \) Из второго уравнения системы \( x^{2}-6yx+5y^{2}=0 \), решая его как квадратное относительно \( x \), имеем \( x_{1}=y, x_{2}=5y \) Исходная система эквивалентна двум системам:\( \left\{\begin{matrix} x+y=6, & & \\ x=y; & & \end{matrix}\right. \left\{\begin{matrix} x+y=6, & & \\ x=5y; & & \end{matrix}\right. \Rightarrow \left\{\begin{matrix} x_{1}=3 & & \\ y_{1}=3 & & \end{matrix}\right. \left\{\begin{matrix} x_{2}=5 & & \\ y_{2}=1 & & \end{matrix}\right. \)
Ответ: \( \left ( 3; 3 \right )\left ( 5; 1 \right ) )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15868: ОДЗ: \( \left\{\begin{matrix} 0< x\neq 1 & & \\ 0< y\neq 1 & & \end{matrix}\right. \) Из первого уравнения системы имеем: \( 2\log _{y}^{2}x-5\log _{y}x+2=0 \), откуда, решая это уравнения как квадратное относительно \( \log _{y}x \), найдем \( \left ( \log _{y}x \right )_{1}=\frac{1}{2} \), или \( \left ( \log _{y}x \right )_{2}=2 \) Отсюда \( x_{1}=\sqrt{y}, x_{2}=y^{2} \) Из второго уравнения системы найдем \( y^{3/2}=27, y_{1}=9 \) Подставляя значение \( x_{2}=y^{2} \), найдем \( y_{2}^{3}=27, y_{2}=3 \) Учитывая ОДЗ, имеем \( \left\{\begin{matrix} x_{1}=3, & & \\ y_{1}=9; & & \end{matrix}\right. \left\{\begin{matrix} x_{2}=9, & & \\ y_{1}=3. & & \end{matrix}\right. \)
Ответ: \( \left ( 3; 9 \right ) , \left ( 9; 3 \right ) )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15869: ОДЗ: \( \left\{\begin{matrix} x> 0, & & \\ y> 0. & & \end{matrix}\right.\) Перейдем к основанию 2. Имеем \( \left\{\begin{matrix} \log _{2}x+\frac{1}{2}\log _{2}y=4 & & \\ \frac{1}{2}\log _{2}x+\log _{2}y=5 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2\log _{2}x+\log _{2}y=8 & & \\ \log _{2}x+2\log _{2}y=10 & & \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \log _{2}x^{2}y=8, & & \\ \log _{2}xy^{2}=10 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x^{2}y=2^{8} & & \\ xy^{2}=2^{10} & & \end{matrix}\right. \) Из первого уравнения системы \( y=\frac{2^{8}}{x^{2}} \) Из второго уравнения \( x*\left ( \frac{2^{8}}{x^{2}} \right )^{2}=2^{10}, x^{3}=2^{6} \), откуда \( x=4, y=16 \)
Ответ: \( \left ( 4; 16 \right ) )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15870: ОДЗ: \( \left\{\begin{matrix} 2x-y> 0, & & \\ y+2x> 0. & & \end{matrix}\right. \) Из первого уравнения системы получаем \( \left ( 2^{\frac{x-y}{2}} \right )^{2}-2.5*2^{\frac{x-y}{2}}+1=0 \) Решая это уравнение как квадратное относительно \( 2^{\frac{x-y}{2}} \), найдем \( \left ( 2^{\frac{x-y}{2}} \right )_{1}=2^{-1} \), или \( \left ( 2^{\frac{x-y}{2}} \right )_{2}=2 \), откуда \( \left ( x-y \right )_{1}=-2 \), или \( \left ( x-y \right )_{2}=2 \) Из второго уравнения системы получаем \( \lg 10\left ( 2x-y \right )=\lg 6\left ( 2x+y \right ) \), откуда \( 10\left ( 2x-y \right )=6\left ( 2x+y \right ), x=2y \) Таким образом, исходная система эквивалента системам уравнений: \left\{\begin{matrix} x-y=-2 & & \\ x=2y & & \end{matrix}\right. \left\{\begin{matrix} x-y=2 & & \\ x=2y & & \end{matrix}\right. \), откуда: \( \left\{\begin{matrix} x_{1}=-4 & & \\ y_{1}=-2 & & \end{matrix}\right. \left\{\begin{matrix} x_{2}=4 & & \\ y_{2}=2 & & \end{matrix}\right. \left\{\begin{matrix} x_{1}=-4 & & \\ y _{1}=-2 & & \end{matrix}\right. \) ( не подходит по ОДЗ).
Ответ: \( \left ( 4; 2 \right ) )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15871: ОДЗ: \( \left\{\begin{matrix} x> 0, & & \\ y> 0. & & \end{matrix}\right. \) Перепишем первое уравнение системы в виде \( \log _{4}x=\log _{2}y^{2} \Rightarrow \frac{1}{2}\log _{2}x=\log _{2}y, \log _{2}x=\log _{2}y^{2}, x=y^{2} \) Из второго уравнения системы имеем \( y^{4}-2y^{2}-8=0 \), откуда с учетом ОДЗ, \( y=0 \) Тогда \( x=4 \)
Ответ: \( \left ( 4; 2 \right ) )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15872: ОДЗ: \( \left\{\begin{matrix} x+y> 0 & & \\ x-y> 0 & & \end{matrix}\right. \) Из условия \( \left\{\begin{matrix} \lg \left ( x^{2}+y^{2} \right )=\lg 20 & & \\ \lg \left ( x^{2}-y^{2} \right )=\lg 12 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x^{2}+y^{2}=20 & & \\ x^{2}-y^{2}=12 & & \end{matrix}\right. \) Отсюда \( x^{2}=16 \), откуда \( x_{1,2}=\pm 4. y^{2}=4 , y_{1,2}=\pm 2 \) Следовательно, \left\{\begin{matrix} x_{1}=4, & & \\ y_{1}=2; & & \end{matrix}\right. \left\{\begin{matrix} x_{2}=4 & & \\ y_{2}=-2 & & \end{matrix}\right. Остальные решения не удовлетворяют ОДЗ.
Ответ: \( \left ( 4; 2 \right ), \left ( 4; -2 \right ) )\