Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15752: ОДЗ: \( \left\{\begin{matrix} x^{2}-21> 0 & & \\ x> 0 & & \end{matrix}\right.x> \sqrt{21} \) . Из условия имеем \( \lg \left ( x^{2}-21 \right )-\lg 100=\lg x-\lg 25, \lg \frac{x^{2}-21}{100}= \frac{2}{25}, \frac{ x^{2} -21}{ 100}= \frac{ x}{ 25} \) . Получаем квадратное уравнение \( x^{2}-4x -21 =0 \) , корнями которого будут \( x_{1}=7, x_{2}=-3; x_{2}= -3 \) не подходит по ОДЗ.
Ответ: 7
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15753: ОДЗ: \( \left\{\begin{matrix} x^{2}-21> 0 & & \\ x> 0 & & \end{matrix}\right. x> \sqrt{21} \) Записываем \( 5^{\log _{2}\left ( x^{2}-21 \right )}*0.04*\frac{1}{25^{-0.5\log _{2}x}}=1, 5^{\log _{2}\left ( x^{2}-21 \right )}=5^{2+\log _{2}x}, \log _{2}\left ( x^{2}-21 \right )=2+\log _{2}x, \log _{2}\left ( x^{2}-21 \right )=\log _{2}4x \), откуда \( x^{2}-21=4x, x^{2}-4x-21=0, x_{1}=7, x_{2}=-3; x_{2}=-3 \) не подходит по ОДЗ.
Ответ: 7
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15754: \( \left ( N^{\frac{1}{\log _{2}N}}*N^{\frac{1} {\log _{4}N}}N^{\frac{1}{\log _{8}N}}... N^{\frac{1}{\log _{512}N}} \right )^{\frac{1} {15}}=\left (N\log _{N}2*N\log _{N}4*N\log _{N}8... N\log _{N}512 \right )^{\frac{1}{15}}=\left ( 2*4*8*...512 \right )^{\frac{1}{15}}=\left ( 2^{1}*2 ^{2}*2^{3}... 2^{9}\right )^{\frac{1}{15}}=\left ( 2 ^{1+2+3+...+9} \right )^{\frac{1}{15}} \) Выражение \( S_{n} =1 +2 +3 +...+9 \) является суммой членов арифметической прогресии, где \( a_{1}=1, d=1, a_{n}=9, n=9 \) Тогда \( S_{n}=\frac{a_{1}+a_{n}}{2}n=\frac{1+9}{2}*9=45 \) Отсюда \( \left ( 2^{45} \right )^{\frac{1}{15}}=2^{3}=8 \)
Ответ: 8
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15755: ОДЗ: \( x-5\geq 0, x\geq 5. 3^{2\sqrt{x-5}}-6*3^{\sqrt{x-5}}-27=0 \) Решаем уравнение как квадратное относительно \( 3^{\sqrt{x-5}} \) Имеем \( 3^{\sqrt{x-5}}=-3 \) (не подходит) \( 3^{\sqrt{x-5}}=9 \), откуда \( \sqrt{x-5}=2 , x-5=4 \) Тогда \( x=9 \)
Ответ: 9
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15756: ОДЗ: \( x\geq 0 \) Из условия \( \frac{1}{3}\lg \left ( 271+3^{2\sqrt{x}} \right )+1=2, \lg \left ( 271+3^{2\sqrt{x}} \right )=3 \) Тогда \( 271+3^{2\sqrt{x}}=1000, 3^{2\sqrt{x}}=3^{6} \), откуда \( \sqrt{x}=3, x=9 \)
Ответ: 9
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15757: ОДЗ: \( x> 0 \) Из условия \( 4^{\log _{3}x}*5^{\log _{3}x}=400, 20^{\log _{3}x}=20^{2} \), откуда \( \log _{3}x=2, x=9 \)
Ответ: 9
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15758: ОДЗ: \( x\geq 0 \) Из условия имеем \( 5^{\frac{x}{\sqrt{x}+2}}*5^{\frac{4}{\sqrt{x}+2}}=5^{3x-12}*5^{-2x+4} \Leftrightarrow 5^{\frac{x}{\sqrt{x}+2}-\frac{4}{\sqrt{x}+2}}=5^{3x-12-2x+4} \Leftrightarrow \frac{x-4}{\sqrt{x}+2}=x-8 \Leftrightarrow x\sqrt{x}+x-8\sqrt{x}-12=0 \) Пусть \( \sqrt{x}=y\geq 0 \) Относительно \( у \) уравнение принимает вид \( y^{3}+y^{2}-8y-12=0, \left ( y-3 \right \)left ( y+2 \right )^{2}=0 \), откуда \( y_{1}=3, y_{2,3}=-2, y_{2,3}=-2 \) не подходит. Тогда \( \sqrt{x}=3, x=9\)
Ответ: 9
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15759: ОДЗ: \( \left\{\begin{matrix}lgx> 0 & & \\ lgx^{3}-2> 0 & & \end{matrix}\right. x> \sqrt[3]{100} \) Из условия имеем \( \lg \left ( \lg x*\left ( \lg x^{3}-2 \right ) \right )=0, \lg x\left ( 3\lg x-2 \right )=1, 3\lg ^{2}x-2\lg x-1=0 \) Решая это уравнение как квадратное относительно \( \lg x \), найдем \( \left (\lg x \right )_{1}=-\frac{1}{3} \), откуда \( x_{1}=\frac{1}{\sqrt[3]{10}} \), или \( \left ( \lg x \right )_{2}=1 \), откуда \( x_{2}=10; x_{1}=\frac{1}{\sqrt[3]{10}} \) не подходит по ОДЗ.
Ответ: 10
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15760: ОДЗ: \( \left\{\begin{matrix}6+x\geq 0, & & & \\ x> 0, & & & \\ x\neq 1, & & & \end{matrix}\right.0< x\neq 1 \) Перейдем к основанию 10. Имеем \( \lg \left ( \sqrt{6+x}+6 \right )=2\lg \sqrt{x}, \lg \left ( \sqrt{6+x}+6 \right )=\lg x \) Тогда \( \sqrt{6+x}+6=x, \sqrt{6+x}=x-6\Rightarrow \left\{\begin{matrix} x^{2}-13x+30=0 & & \\ x\geq 6, & & \end{matrix}\right. \), откуда \( x=10 \)
Ответ: 10
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15761: ОДЗ: \( \left\{\begin{matrix} x+6> 0 & & \\ x-2> 0 & & \end{matrix}\right.x> 2 \) Имеем \( \lg \frac{8}{\sqrt{x+6}}=\lg \frac{16}{x-2}, \frac{8}{\sqrt{x+6}}=\frac{16}{x-2}, 2\sqrt{x+6}=x-2, x^{2}-8x-20=0 \), откуда \( x_{1}=10, x_{2}=-2; x_{2}=-2 не подходит по ОДЗ.
Ответ: 10
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15762: ОДЗ: \( \left\{\begin{matrix} 2x-19> 0 & & \\ 3x-20> 0 & & \end{matrix}\right.x> \frac{19}{2}\) Из условия \( \lg \left ( 2x-19 \right )-\lg \left ( 3x-20 \right )=-\lg x, \lg \left ( 2x-19 \right )+\lg x=\lg \left ( 3x-20 \right ), x\left ( 2x-19 \right )=3x+20, x^{2}-11x+10=0 \) Отсюда \( x_{1}=10, x_{2}=1; x_{2}=1\) не подходит по ОДЗ.
Ответ: 10
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15763: ОДЗ: \( x\geq 0 \) Перепишем уравнение в виде \( 3^{\frac{3}{5}\left ( \frac{x}{4}-\sqrt{\frac{x}{3}} \right \)left ( \frac{x}{4}+\sqrt{\frac{x}{3}} \right )}=3^{\frac{7}{4}} \) Тогда \( \frac{3}{5}\left ( \frac{x}{4}-\sqrt{\frac{x}{3}} \right \)left ( \frac{x}{4}+\sqrt{\frac{x}{3}} \right )=\frac{7}{4}, 3x^{2}-16x-140=0 \), откуда \( x_{1}=10, x_{2}=-\frac{14}{3}; x_{2}=-\frac{14}{3} \) не подходит по ОДЗ.
Ответ: 10
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15764: ОДЗ: \( \left\{\begin{matrix} x-9> 0 & & \\ 2x-1> 0, x> 9 & & \end{matrix}\right \) Из условия \( \log _{5}\frac{\sqrt{\left ( x-9 \right \)left ( 2x-1 \right )}}{10}=0\Leftrightarrow \frac{\sqrt{\left ( x-9 \right \)left ( 2x-1 \right )}}{10}=1\Leftrightarrow \sqrt{\left ( x-9 \right \)left ( 2x-1 \right )}=10 \Rightarrow \left ( x-9 \right \)left ( 2x-1 \right ) =100 \), откуда \( 2x^{2}-19x-91=0, x_{1}=13, x_{2}=-\frac{7}{2}; x_{2}=-\frac{7}{2} \) не подходит по ОДЗ.
Ответ: 13
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15765: ОДЗ: \( \left\{\begin{matrix} \log _{2}x> 0, & & \\ \log _{4}x> 0, & & \end{matrix}\right. \Leftrightarrow x> 1 \) Перейдем к основанию 2. Имеем \( \frac{1}{2}\log _{2}\log _{2}x+\log _{2}\left ( \frac{1}{2}\log _{2}x \right )=2 \Leftrightarrow \log _{2}\log _{2}x+2\log _{2}\left ( \frac{1}{2}\log _{2}x \right )=4 \Leftrightarrow \log _{2}\log _{2}x+\log _{2}\left ( \frac{1}{4}\log _{2}^{2}x \right )=4 \Leftrightarrow \log _{2}\left ( \log _{2}x*\frac{1}{4}\log _{2}^{2}x \right )=4 \Leftrightarrow \frac{1}{4}\log _{2}^{3}x=16, \log _{2}^{3}x=64 \) Тогда \( \log _{2}x=4, x=2^{4}=16 \)
Ответ: 16
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15766: ОДЗ: \( \left\{\begin{matrix} 2^{\sqrt{x-1}-1}-1> 0 & & \\ x-1\geq 0 & & \end{matrix}\right. \Leftrightarrow x> 2 \) Перепишем уравнение в виде \( \lg 8+\lg \left ( 2^{\sqrt{x-1}-1}-1 \right )=\lg \left ( 0.4\sqrt{2}^{\sqrt{x-1}}+4 \right )+\lg 10 \Leftrightarrow \lg \left ( 8*\left ( 2^{\sqrt{x-1}-1}-1 \right ) \right )=\lg \left ( 4\sqrt{2}^{\sqrt{x-1}}+40 \right ) \Leftrightarrow 8\left ( 2^{\sqrt{x-1}-1}-1 \right )=4\left ( \sqrt{2}^{\sqrt{x-1}}+10 \right ) \Leftrightarrow \left ( 2^{\frac{\sqrt{x-1}}{2}} \right )^{2}-2^{\frac{\sqrt{x-1}}{2}}-12=0 \) Решая это уравнение как квадратное относительно \( 2^{\frac{\sqrt{x-1}}{2}} \), получим \( 2^{\frac{\sqrt{x-1}}{2}}=-3 \), (нет решений), или \( 2^{\frac{\sqrt{x-1}}{2}}=2^{2} \), откуда \( \frac{\sqrt{x-1}}{2}=2 , \sqrt{x-1}=4, x-1=16, x=17 \)
Ответ: 17
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15767: Перепишем уравнение в виде \( \left ( \sqrt[10]{3} \right )^{2x}+\frac{\left ( \sqrt[10]{3} \right )^{x}}{3}-84=0, 3*\left ( \sqrt[10]{3} \right )^{2x}+\left ( \sqrt[10]{3} \right )^{x}-252=0 \) Решая уравнение как квадратное относительно \( \left ( \sqrt[10]{3} \right )^{x} \), получим \( \left ( \sqrt[10]{3} \right )^{x}=-\frac{23}{3}, \varnothing \); или \( \left ( \sqrt[10]{3} \right )^{x}=9, 3\frac{x}{10}=3^{2} \), откуда \( \frac{x}{10}=2, x=20 \)
Ответ: 20
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15768: ОДЗ: \( x\geq 0 \) Из условия \( 2^{\frac{1}{2}}*2^{\frac{5}{4\sqrt{x}+10}}=2^{\frac{2}{\sqrt{x}+1}}, 2^{\frac{1}{2}-\frac{5}{4\sqrt{x}+10}}= 2^{ \frac{ 2}{ \sqrt{ x} +1}} \), откуда \( \frac{1}{2}-\frac{5}{4\sqrt{x}+10}= \frac{2}{\sqrt{x}+1} \Rightarrow \left ( \sqrt{x} \right )^{2}-3\sqrt{x}-10= 0 \) Решая это уравнение как квадратное относительно \( \sqrt{x} \), найдем \( \sqrt{x}=-2, \varnothing \); или \( \sqrt{ x} = 5 \), откуда \( x=25 \)
Ответ: 25
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15769: ОДЗ: \( \left\{\begin{matrix} \frac{1}{2}\log _{0.2}x+1\geq 0, & & & \\ \log _{0.2}+3\geq 0 & & & \\ x> 0 & & & \end{matrix}\right. \Leftrightarrow 0< x\leq 25 \) Перейдем к основанию 0,2. Имеем \( \sqrt{\frac{1}{2}\log _{0.2}x+1}+\sqrt{\log _{0.2}x+3}=1\Leftrightarrow \sqrt{\log _{0.2}x+2}+\sqrt{\log _{0.2}x+6}=\sqrt{2} \) Возведя обе части уравнения в квадрат, получим \( \log _{0.2}x+2+2\sqrt{\left ( \log _{0.2}x+2 \right \)left ( 2\log _{0.2}x+6 \right )}+2\log _{0.2}x+6=2\Leftrightarrow 2\sqrt{\left ( \log _{0.2}x+2 \right \)left ( 2\log _{0.2}x+6 \right )}=-3\log _{0.2}x-6\Rightarrow 4\left ( \log _{0.2}x+2 \right \)left ( 2\log _{0.2}x+6 \right )=9\left ( \log _{0.2}x+2 \right )^{2} , -3\log _{0.2}x-6\geq 0\Leftrightarrow \log _{0.2}x+2\leq 0 \) С учетом ОДЗ имеем \( \log _{0.2}x+2=0 \), откуда \( x=25 \)
Ответ: 25
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15770: ОДЗ: \( 0< x\neq 1 \) Из условия \( 3^{\frac{3\left ( \sqrt{x}+1 \right )}{2\sqrt{x}}*\frac{2}{\sqrt{x}-1}}=3^{\frac{9}{10}} \Leftrightarrow \frac{3\left ( \sqrt{x}+1 \right )}{2\sqrt{x}}*\frac{2}{\sqrt{x}-1}=\frac{9}{10} \Leftrightarrow 3x-13\sqrt{x}-10=0 \) Решая это уравнение как квадратное относительно \( \sqrt{x} \), получим \( \left ( \sqrt{x} \right )_{1}=-\frac{2}{3} \) (не подходит), или \( \left ( \sqrt{x} \right )_{2}=5 \) Тогда \( x=25 \)
Ответ: 25
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15771: ОДЗ: \( \left\{\begin{matrix} x-5> 0 & & & \\ x+7> 0 & & & \\ \sqrt{x+7}\neq 2 & & & \end{matrix}\right. x> 5 \) Из условия \( \lg 8-\lg \left ( x-5 \right )=\lg 2-\lg \sqrt{x+7}, \lg \frac{8}{x-5}=\lg \frac{2}{\sqrt{x+7}}, \frac{8}{x-5}=\frac{2}{\sqrt{x+7}}, 4\sqrt{x+7}=x-5, 16x+112=x^{2}-10x+25, x> 5 \) Имеем \( x^{2} - 26x - 87 = 0 \), откуда \( x_{1}=29, x_{2}=-3; x_{2}=- 3 \) не подходит по ОДЗ.
Ответ: 29
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15772: ОДЗ: \( \left\{\begin{matrix} 3x-11> 0 & & \\ x-27> 0 & & \end{matrix}\right. x> 27 \) Имеем \( \log _{5}\left(3x-11 \right )+\log _{5}\left ( x-27 \right )=\log _{5}125+\log _{5}8 , \log _{5}\left(3x-11 \right ) *\left ( x-27 \right ) =\log _{5}\left ( 125*8 \right ) , \left( 3x -11 \right ) \left ( x -27 \right ) = 125 *8, 3x^{ 2} -92x -703 =0 \), откуда находим \( x_{1}=37 , x_{ 2}= - \frac{ 19}{ 3} ; x_{2}= - \frac{ 19}{ 3} \) не подходит по ОДЗ.
Ответ: 37
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15773: ОДЗ: \left\{\begin{matrix} x^{2}-55x+90> 0 & & \\ x-36> 0 & & \end{matrix}\right \) Из условия \( 0.5\left ( \lg \left ( x^{2}-55x+90 \right )-\lg \left ( x-36 \right ) \right )=0.5\lg 2, \lg \frac{x^{2}-55x+90}{x-36}=\lg 2, \frac{x^{2}-55x+90}{x -36}=2 \) Имеем \( x^{2}-57x+162=0 \) при \( x\neq 36 \) Отсюда \( x_{1}=54 , x_{ 2}=3 ; x_{ 2}= 3 \) не подходит по ОДЗ.
Ответ: 54
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15774: ОДЗ: \( x> 0 \) Имеем \( \log _{2}x+\frac{1}{2}\log _{2}x+\frac{1}{3}\log _{2}x=11, \log _{2}x=6 \), откуда \( x = 2 ^{ 6 } = 64 \)
Ответ: 64
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15775: ОДЗ: \( x\geq 0 . 3^{\frac{1}{2}}*3^{\frac{x}{1+\sqrt{x}}}*3^{-\frac{2+\sqrt{x}+x}{2\left ( 1+\sqrt{x} \right )}}=3^{4}, 3^{\frac{1}{2}+\frac{x}{1+\sqrt{x}}-\frac{2+\sqrt{x}+x}{2\left ( 1+\sqrt{x} \right )}}= 3^{4} \), откуда \( \frac{1}{2}+\frac{x}{1+\sqrt{x}}-\frac{2+\sqrt{x}+x}{2 \left ( 1+ \sqrt{x} \right )}=4, \Rightarrow x-8\sqrt{x} - 9 = 0 \) Решив это уравнение как квадратное относительно \( \sqrt{x} \), найдем \( \sqrt{x}=-1,\varnothing \); или \( \sqrt{x}=9 \), откуда \( x=81 \)
Ответ: 81
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 2
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15776: ОДЗ: \( x> 0 \) Из условия \( 7^{\lg x}-5*5^{lgx}=\frac{3}{5}*5^{\lg x}-\frac{13}{7}*7^{\lg x} , 35*7^{\lg x}+65*7^{\lg x}=21*5^{\lg x}+175*5^{\lg x} , 100*7^{\lg x}=196*5^{\lg x} , \left ( \frac{7}{5} \right )^{\lg x}=\left ( \frac{7}{5} \right )^{2} \), откуда \( \lg x=2 \) и \( x=100 \)
Ответ: 100
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15777: ОДЗ: \( 0< x\neq 1 \) Перепишем уравнение в виде \( 5^{\lg x}=50-5^{\lg x}, 2*5^{\lg x}=50, 5^{\lg x}=25 \), откуда \( \lg x=2, x=10^{2}=100\)
Ответ: 100
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15778: ОДЗ: \( \lg \left ( 390635-5^{\sqrt[3]{2x}} \right \)geq 0 \) Перепишем уравнение в виде \( \lg \sqrt{10}-\lg 100+2.5=\sqrt[6]{\lg \left ( 390635-5^{\sqrt[3]{2x}} \right )} \Leftrightarrow 0.5-2+2.5= \sqrt[6]{\lg \left ( 390635-5^{\sqrt[3]{2x}} \right )}, 1=\sqrt[6]{\lg \left ( 390635-5^{\sqrt[3]{2x}} \right )}\Leftrightarrow 10=\left ( 390635-5^{\sqrt[3]{2x}} \right \)Leftrightarrow 5^{\sqrt[3]{2x}}=390625 \Leftrightarrow 5^{\sqrt[3]{2x}}=5^{8} \Leftrightarrow \sqrt[3]{2x}=8, x=256 \)
Ответ: 256
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15779: \( \lg \beta =\frac{1}{1-\lg \alpha }; \lg \gamma =\frac{1}{1-\lg \beta }=\frac{1}{1-\frac{1}{1-\lg \alpha }}=\frac{1-\lg \alpha }{-\lg \alpha }=-\frac{1}{\lg \alpha }+1; \frac{1}{\lg \alpha }=1-\lg \gamma ;\lg \alpha =\frac{1}{1-\lg \gamma }; \alpha =10^{1/\left ( 1-\lg \gamma \right )} \)
Ответ: \( \alpha =10^{1/\left ( 1-\lg \gamma \right )} )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15780: \( \log _{abcd}x=\frac{\log _{x}x}{\log _{x}abcd}=\frac{1}{\log _{x}a+\log _{x}b+\log _{x}c+\log _{x}d}=\frac{1}{\frac{1}{\log _{a}x}+\frac{1}{\log _{b}x}+\frac{1}{\log _{c}x}+\frac{1}{\log _{d}x}}=\frac{1}{\frac{1}{\alpha }+\frac{1}{\beta }+\frac{1}{\gamma }+\frac{1}{\delta }}=\frac{\alpha \beta \gamma \delta }{\beta \gamma \delta +\alpha \gamma \delta +\alpha \beta \delta +\alpha \beta \delta } \)
Ответ: \( \frac{\alpha \beta \gamma \delta }{\beta \gamma \delta +\alpha \gamma \delta +\alpha \beta \delta +\alpha \beta \delta } )\
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Показательные и логарифмические уравнения, смешанные логарифмические и показательные выражения и уравнения,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге: Егерев В. К., Зайцев В. В., Кордемский Б. А., Маслова Т. Н., Орловская И. Ф., Позойский Р. И., Ряховская Г. С., Сканави М. И. Сборник задач по математике для конкурсных экзаменов во ВТУЗы / Под общей редакцией М. И. Сканави. — М.: Высшая школа, 1969. — 382 с.
Решение №15781: Преобразуем знаменатель второго члена уравнения: \( 4^{\sin ^{2}\left ( x-\frac{\pi }{4} \right )}=4^{\left ( \sin x\cos \frac{\pi }{4}-\cos x\sin \frac{\pi }{4} \right )^{2}}=4^{\left ( \frac{\sqrt{2}}{2} \right \)left ( \sin ^{2}x-2\sin x\cos x+\cos ^{2}x \right )}=4^{\frac{1}{2}\left ( 1-\sin 2x \right )}=4^{\frac{1}{2}-\frac{1}{2}\left ( \sin 2x \right )}=\frac{2}{2^{\sin 2x}} \), откуда \( \frac{6}{4^{\sin ^{2}\left ( x-\frac{\pi }{4} \right )}}=3*2^{\sin 2x} \) Получаем уравнение \( \left ( 2^{\sin 2x} \right )^{2}+3*2^{\sin 2x}-4=0 \Rightarrow 2^{\sin 2x}=-4 \), (нет решений) или 2^{\sin 2x}=1 \), откуда \( \sin 2x=0 , x=\frac{\pi n}{2} \), где \( n\epsilon Z \)
Ответ: \( \frac{\pi n}{2}; n\epsilon Z )\