Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15632: \(b_{1} = -3\), \(q=\frac{1}{2}\), \(S_{5} = \frac{-3((\frac{1}{2})^{5}-1)}{\frac{1}{2}-1}=-\frac{93}{16}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15633: \(b_{1} = \sqrt{2}\), \(q=3\), \(S_{5} = \frac{\sqrt{2}(3)^{5}-1)}{3-1}=121\sqrt{2}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15634: \(b_{3} = \sqrt{b_{4}*b_{2}} = \sqrt{16*4} = 8\); \(q = b_{3}:b_{2}=8:4=2\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15635: \(b_{6} =- \sqrt{b_{5}*b_{7}} = -\sqrt{3*12} =-6\); \(q = b_{3}:b_{2}=8:4=2\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15636: \(b_{26} =- \sqrt{b_{25}*b_{27}} = -\sqrt{7*21} =-7\sqrt{3}\); \(q = b_{26}:b_{25}=-\sqrt{3}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15637: \(b_{7} =- \sqrt{b_{6}*b_{8}} = -\sqrt{15*5} =5\sqrt{3}\); \(q = b_{8}:b_{7}=\frac{\sqrt{3}}{3}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15638: Если t,4t,8 - члены прогрессии, то \(t*8=(4t)^{2}\), таак что \(t=\frac{1}{2}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15639: Если -81,3y,-1 - члены прогрессии, то \((-81)*(-1)=(3y)^{2}\), таак что \(y= \pm 3\)
Ответ: \( \pm 3\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15640: Если \(x-1\), \(\sqrt{3x}\),6x - члены прогрессии, то (\(x-1\))6x = (\sqrt{3x})^{2}, \((x-1)*6 = 3\), \(x=\frac{3}{2}\)
Ответ: \(\frac{3}{2}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15641: Величина процентов, которую клиент ежегодно в течение 5 лет выплачивает банку, составляет 50000 • 0,2 = 10000 руб. Поэтому сумма, которую он должен вернуть через 5 лет, составит 50 000 руб + 5 * 10 000 руб. = 100 000 руб.
Ответ: 100000
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Пока решения данной задачи,увы,нет...
Ответ: 510
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Пока решения данной задачи,увы,нет...
Ответ: \(b_{1} = \frac{6}{5}\), \(q=3\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Пока решения данной задачи,увы,нет...
Ответ: \(b_{1} = 0,3\), \(q=(-\frac{1}{5})\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Пока решения данной задачи,увы,нет...
Ответ: \(b_{1} = \frac{5}{2}\), \(q=\frac{1}{2}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Пока решения данной задачи,увы,нет...
Ответ: \(b_{1} = -\frac{4}{7}\), \(q=2\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15647: \(S_{n} = \frac{b_{1}(q^{n}-1)}{q-1}\, \(q^{n} = \frac{S_{n}(q-1)}{b_{1}}+1\), \(3n = \frac{200(3-1)}{5}+1)\, \(3^{n} = 81\), \(n=4\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15648: \(S_{n} = \frac{b_{1}(q^{n}-1)}{q-1}\, \(q^{n} = \frac{S_{n}(q-1)}{b_{1}}+1\),\((\frac{1}{2})^{n} = \frac{-127(\frac{1}{2}-1)}{64*(-1)})\, \(\frac{1}{2}^{n}) = \frac{1}{128}, \(n=7\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15649: \(S_{n} = \frac{b_{1}(q^{n}-1)}{q-1}\, \(q^{n} = \frac{S_{n}(q-1)}{b_{1}}+1\) \(2^{n} = \frac{189*(2-1)}{3}+1)\, \(2^{n}) = 64, \(n=6\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15650: \(S_{n} = \frac{b_{1}(q^{n}-1)}{q-1}\, \(q^{n} = \frac{S_{n}(q-1)}{b_{1}}+1\), \(\frac{1}{3})^{n} = \frac{121(\frac{1}{3}-1)}{27*3}+1)\, \(\frac{1}{3}^{n}) = \frac{1}{243}, \(n=5\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15651: \(b_{1} = \sqrt{3}\), \(b_{9} = 81\sqrt{3}\), \(q> 1\). \(b_{9} = b_{1}q^{8} \Rightarrow q= \sqrt[8]{\frac{b_{9}}{b_{1}}} = \sqrt[8]{81} = \sqrt{3}\) \(b_{2} = b_{1}q = 3\) \(b_{3} = b_{1}*q^{2} = 3\sqrt{3})
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15652: \(b_{1} = 375\), \(b_{3} = 15\), \(0< q< 1\). \(b_{3} = b_{1}q^{2} \Rightarrow q=\sqrt{\frac{b_{3}}{b_{1}}} = \frac{1}{5}\) \(b_{2} = b_{1}q = 75\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15653: \(b_{1} = 5\), \(b_{3} = 80\), \( q< 0\). \(b_{3} = b_{1}q^{2} \Rightarrow q=-\sqrt{\frac{b_{3}}{b_{1}}} = -4\) \(S_{5} = b_{1}\frac{1-q^{5}}{1-q}= 1025\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15654: \(b_{1} = 1\), \(b_{3} = 8\), \( q< 0\). \(b_{3} = b_{1}q^{2} \Rightarrow q=-\sqrt{\frac{b_{3}}{b_{1}}} = -2\sqrt{2}\) \(S_{7} = b_{1}\frac{1-q^{7}}{1-q}= \frac{1+2^{10}\sqrt{2}}{1+2\sqrt{2}}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15655: \(b_{1} = 4\). \(b_{3}+b_{5} = 80\), \(q> 1\), тогда \(b_{3}+b_{5} = b_{1}(q^{2}+q^{4}) =80\) то есть \(q^{2}+q^{4} = 20\), так что \(q=2\) и \(b_{10} = b_{1}*q^{9} = 4*2^{9} = 2^{11} = 2048\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15656: \(b_{1} = 1\). \(b_{5} = 81\), тогда \(q^{4} = \frac{b_{5}}{b_{1}} = 81\), так что \(b_{2} = \pm 3\), \(b_{3} = 9\), \(b_{4} = \pm 27\). То есть 1,3,9,27,81 или 1,-3,9,-27,81.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15657: \(\left\{\begin{matrix} b_{2}-b_{3}=18 & \\ b_{2}+b_{3} = 54 & \end{matrix}\right.\), тогда \(b_{2} = 36\), \(b_{3} = 18\), \( q= b_{3}:b_{2} = \frac{1}{2}\) и \(b_{1} = b_{2}:q = 72\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15658: \(\left\{\begin{matrix} b_{1}+b_{2} +b_{3}=14 & \\ b_{4}+b_{5}+b_{6} = 112 & \end{matrix}\right., \left\{\begin{matrix} b_{1}(1+q+q^{2})=14 & \\ b_{1}q^{3}(1+q+q^{2}) = 112 & \end{matrix}\right.\), \(q^{3} = 8\), \(q=2\), \(b_{1} = 2\) Так что прогрессия : 2,4,8,16,32,64
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15659: \(S_{6}^{*} = b_{1}^{2}+b_{2}^{2}+...+b_{6}^{2}=b_{1}^{2}(1+q^{2}+q^{4}+q^{6}+q^{8}+q^{10})=\frac{b_{1}^{2}(q^{12}-1)}{q^{2}-1}\), \(S_{6}^{*} = \frac{9(64-1)}{1}=567\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15660: \(S_{6}^{*} = b_{1}^{2}+b_{2}^{2}+...+b_{6}^{2}=b_{1}^{2}(1+q^{2}+q^{4}+q^{6}+q^{8}+q^{10})=\frac{b_{1}^{2}(q^{12}-1)}{q^{2}-1}\) \(S_{6}^{*} = \frac{5(46656-1)}{5}=46655\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15661: \(S_{6}^{*} = b_{1}^{2}+b_{2}^{2}+...+b_{6}^{2}=b_{1}^{2}(1+q^{2}+q^{4}+q^{6}+q^{8}+q^{10})=\frac{b_{1}^{2}(q^{12}-1)}{q^{2}-1}\) \(S_{6}^{*} = \frac{12(\frac{1}{64}-1)}{\frac{1}{3}-1}=\frac{729*728}{2*729}=364\)
Ответ: NaN