Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15602: \(b_{n}=b_{1}*q^{n-1}\), \(b_{5}=b_{1}*q^{4}=2,5*(1,5)^{4}=\frac{405}{32}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15603: \(b_{4} = b_{1}q^{3}\Rightarrow q = \sqrt[3]{\frac{b_{4}}{b_{1}}} = \sqrt[3]{64} = 4\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15604: \(b_{8} = b_{1}q^{7}\Rightarrow q = \sqrt[7]{\frac{b_{8}}{b_{1}}} = \sqrt[7]{-\frac{16}{\sqrt{2}}} = -\sqrt{2}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15605: \(b_{4} = b_{1}q^{3}\Rightarrow q = \sqrt[3]{\frac{b_{4}}{b_{1}}} = \sqrt[3]{\frac{1}{343}} = \frac{1}{7}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15606: \(b_{6} = b_{1}q^{5}\Rightarrow q = \sqrt[5]{\frac{b_{6}}{b_{1}}} = \sqrt[5]{-\frac{1}{243}} = -\frac{1}{3}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15607: \(b_{9} = b_{1}q^{8}\Rightarrow q = \sqrt[8]{\frac{b_{9}}{b_{1}}} = \sqrt[8]{256} = 2\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15608: \(b_{5} = b_{1}q^{4}\Rightarrow q = \sqrt[4]{\frac{b_{5}}{b_{1}}} = \sqrt[4]{\frac{1}{625}} = \frac{1}{5}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15609: \(b_{7} = b_{1}q^{6}\Rightarrow q = \sqrt[6]{\frac{b_{7}}{b_{1}}} = \sqrt[6]{729} = 3\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15610: \(b_{3} = b_{1}q^{2}\Rightarrow q = \sqrt{\frac{b_{3}}{b_{1}}} = \sqrt{\frac{1}{36}} = \frac{1}{6}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15611: \(\frac{1}{729} = \frac{1}{3}*(\frac{1}{2})^{n-1}*\frac{1}{729}=(\frac{1}{3})^{n}\), \(n=6\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15612: \(2 = 256*(\frac{1}{2})^{n-1}*(\frac{1}{2})^{n-1}=\frac{1}{128}\), \(n=8\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15613: \(4*10^{-3} = 2,5*(\frac{1}{5})^{n-1}=\frac{1}{625}\), \(n=5\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15614: \(-2401 = \frac{1}{343}*(-7)^{n-1}*(-7)^{n-1}=-823543\), \(n=8\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15615: \(b_{1}=1\), \(b_{4} = \frac{1}{8}\), тогда \(q=\sqrt[3]{b_{4}:b_{1}} = \frac{1}{2}\) и \(b_{2} = \frac{1}{2}\), \(b_{3} = \frac{1}{4}\). То есть 1,\(\frac{1}{2}\), \(\frac{1}{4}\), \(\frac{1}{8}\).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15616: \(P_{k}\)-периметр k-го вписанного треугольника \(P_{1} = 3*32=96\), \(P_{2} = 3*\frac{32}{2} = 48\), \(P_{3} = 24,...\) Так что \(P_{1}\), \(P_{2}\), \(P_{3}\)...-геометрическая прогрессия. \(P_{n} = 96*(\frac{1}{2})^{n-1}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15617: \(S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}), \(S_{4}=\frac{1(2^{4}-1)}{2-1}=15\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15618: \(S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}), \(S_{4}=\frac{3(4^{4}-1)}{4-1}=255\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15619: \(S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}), \(S_{4}=\frac{1((\frac{1}{3})^{4}-1)}{\frac{1}{3}-1}=\frac{3}{2}*\frac{80}{81}=\frac{40}{27}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15620: \(S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}), \(S_{4}=\frac{4((-\frac{1}{2})^{4}-1)}{-\frac{1}{2}-1}=\frac{4*2*15}{3*16}=\frac{5}{2}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, Понятие многочлена,
Задача в следующих классах: 7 класс
Сложность задачи : 1
Задача встречается в следующей книге: Сборник задач по алгебре. Часть 3. Текстовые задачи. Элементы высшей математики. В помощь учащимся 10–11-х классов/ О.В. Нагорнов, А.В. Баскаков, О. Б. Баскакова, С.А. Гришин, А.Б. Костин, Р.Р. Резванов. – М.: НИЯУ МИФИ, 2009. – 132 с.
Решение №15621: \(0,3\cdot p^{2}+13\cdot p-1\)
Ответ: является
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15622: \(S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}), \(S_{6}=\frac{18((\frac{1}{3})^{6}-1)}{\frac{1}{3}-1}=\frac{8*3*728}{2*729} = \frac{728}{27}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15623: \(S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}), \(S_{6}=\frac{15((\frac{2}{3})^{6}-1)}{\frac{2}{3}-1}=\frac{15*3*665}{729} = \frac{3325}{81}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15624: \(S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}), \(S_{6}=\frac{-12((-\frac{1}{2})^{6}-1)}{-\frac{1}{2}-1}=-\frac{12*2*63}{3*64} = -\frac{63}{8}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15625: \(S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}), \(S_{6}=\frac{-9((\sqrt{3})^{6}-1)}{\sqrt{3}-1}=-\frac{234}{\sqrt{3}-1}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15626: \(S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}), \(S_{6}=\frac{5(2^{6}-1)}{2-1}=315\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15627: \(S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}), \(S_{8}=\frac{-1((-1,5)^{8}-1)}{-1,5-1}=\frac{1261}{128}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15628: \(S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}), \(S_{13}=\frac{-4((\frac{1}{2})^{13}-1)}{\frac{1}{2}-1}=-\frac{8191}{1024}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15629: \(S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}), \(S_{8}=\frac{4,5((\frac{1}{3})^{8}-1)}{\frac{1}{3}-1}=-\frac{1640}{243}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15630: \(b_{1} = 3\), \(q=2\), \(S_{5} = \frac{3(2^{5}-1)}{2-1}=93\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Сумма п первых членов геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15631: \(b_{1} = -1\), \(q=-2\), \(S_{5} = \frac{-1((-2)^{5}-1)}{-2-1}=-11\)
Ответ: NaN