Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15571: \(b_{41} = b_{1}*q^{40}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15572: \(b_{k} = b_{1}*q^{k-1}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15573: \(b_{2n} = b_{1}*q^{2n-1}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15574: \(b_{4}=b_{1}*q^{3} = 128*(-\frac{1}{2})^{3} = -16\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15575: \(b_{5}=b_{1}*q^{4} = 270*(\frac{1}{3})^{n} = \frac{10}{3}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15576: \(b_{8}=b_{1}*q^{7} = \frac{1}{5}*(\sqrt{5})^{7} = 25\sqrt{5}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15577: \(b_{6}=b_{1}*q^{5} = 625*(-\frac{1}{5})^{5} = -\frac{1}{5}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15578: \(b_{4} = b_{1}*q^{3} = -2*(-\frac{3}{2})^{3}=\frac{27}{4}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15579: \(b_{5} = b_{1}*q^{4} = \sqrt{6}*(\sqrt{2})^{4}=4\sqrt{6}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15580: \(b_{4} = b_{1}*q^{3} = 3*(-\frac{3}{4})^{3}=-\frac{81}{64}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15581: \(b_{6} = b_{1}*q^{5} = 5\sqrt{5}*(5^{\frac{1}{2}})^{^{5}}=5^{-1}-\frac{1}{5}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15582: \(q=b_{3}:b_{2} = (-32):8 = -4:b_{1}=b_{2}:q=-2\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15583: \(q=b_{5}:b_{4} = (-\frac{1}{2}):1 =-\frac{1}{2}:b_{1}=b_{4}:q^{3}=1:(-\frac{1}{2})^{3} = -8\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15584: \(q=b_{3}:b_{2} = \frac{3}{4}):\frac{3}{2} =\frac{1}{2}:b_{1}=b_{2}:q=3\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15586: \(q=b_{6}:b_{5} = 3:6 =\frac{1}{2}:b_{1}=b_{5}:q^{4}=6:(\frac{1}{2})^{4}=96\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15587: \(b_{n} = 3*2^{n-1}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15588: \(b_{n} = -2,5*(\frac{1}{\sqrt{2}})^{n-1}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15589: \(b_{n} = 2,5*(-0,2)^{n-1}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15590: \(b_{n} = 3\sqrt{3}*(\frac{1}{3})^{^{n-1}}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15591: \(b_{n} = 8*(\frac{1}{2})^{n-1}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15592: \(b_{n} = -\frac{1}{4}*(-\frac{1}{4})^{n-1}=(-\frac{1}{4})^{n}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15593: \(b_{n} = 4*(\frac{1}{4})^{n-1}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15594: \(b_{n} = \sqrt{2}*(\sqrt{2})^{n-1} = (\sqrt{2})^{n}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15595: \(b_{n}=5^{n-1}\), \(b_{n}= b_{1}*q^{n-1}\), \(b_{1} = 1\), \(q=5\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15596: \(b_{n}=\frac{3}{5}*2^{n}\), \(b_{n}= \frac{6}{5}*2^{n-1}\), \(b_{1} = \frac{6}{5}\), \(q=2\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15597: \(b_{n}=\frac{\sqrt{3}}{2}*(\frac{1}{4})^{n-1}\), \(b_{1}=\frac{\sqrt{3}}{2}\), \(q=\frac{1}{4}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15598: \(b_{n}=\frac{5}{2^{n+1}}*b_{n} = \frac{5}{4}(\frac{1}{2}^{n-1})\), \(b_{1}=\frac{5}{4}\), \(q=\frac{1}{2}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15599: \(b_{n}=b_{1}*q^{n-1}\), \(b_{10}=b_{1}*q^{9}=1*3^{9}=3^{9}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15600: \(b_{n}=b_{1}*q^{n-1}\), \(b_{6}=b_{1}*q^{5}=\frac{1}{2}*(-\frac{1}{3})^{5}=-\frac{1}{486}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Определение геометрической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15601: \(b_{n}=b_{1}*q^{n-1}\), \(b_{5}=b_{1}*q^{4}=8*(\frac{1}{2})^{4}=\frac{1}{2}\)
Ответ: NaN