Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15451: \(a_{n} = a_{1} + (n-1)*d = 0,2+12*\frac{1}{3}=4,2\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15452: \(a_{1} = -10-14*2=-38\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15453: \(a_{1} = 10\frac{1}{2}-6*\frac{1}{4}=9\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15454: \(a_{1} = 9,5-16*(-0,6)=19,1\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15455: \(a_{1} = -2,94-14*(-0,3)=1,26\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15456: \(a_{n} = a_{1}+(n-1)*d\), \(d = \frac{a_{n}-a_{1}}{n-1}) \(d = \frac{39-3}{11-1}=3,6\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15457: \(a_{n} = a_{1}+(n-1)*d\), \(d = \frac{a_{n}-a_{1}}{n-1}) \(d = \frac{-18,4-(-0,2)}{15-1}=-1,3\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15458: \(a_{n} = a_{1}+(n-1)*d\), \(d = \frac{a_{n}-a_{1}}{n-1}) \(d = \frac{1\frac{1}{4}-5\frac{5}{8}}{36-1}=-\frac{1}{8}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15459: \(a_{n} = a_{1}+(n-1)*d\), \(d = \frac{a_{n}-a_{1}}{n-1}) \(d = \frac{0-0,36}{37-1}=-0,1\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15460: \(a_{n} = a_{1}+(n-1)*d\), так что \(n= \frac{a_{n}-a_{1}}{d} + 1\) \(n=\frac{(67-1)*3}{2}+1=100\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15461: \(a_{n} = a_{1}+(n-1)*d\), так что \(n= \frac{a_{n}-a_{1}}{d} + 1\) \(n=\frac{5-0}{0,5}+1=11\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15462: \(a_{n} = a_{1}+(n-1)*d\), так что \(n= \frac{a_{n}-a_{1}}{d} + 1\) \(n=\frac{10,5-(-6)}{0,75}+1=23\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15463: \(a_{n} = a_{1}+(n-1)*d\), так что \(n= \frac{a_{n}-a_{1}}{d} + 1\) \(n=\frac{100-(-4,5)}{5,5}+1=20\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15464: \(b= a_{1} + (n-1)d\),\(n=\frac{b-a_{1}}{d}+1\), если b- является членом прогрессии \(n=\frac{21,2-5}{0,3}+1=55\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15465: \(b= a_{1} + (n-1)d\),\(n=\frac{b-a_{1}}{d}+1\), если b- является членом прогрессии \(n=\frac{0,65-3}{-0,35}+1=7,7\), так b- не является членом прогрессии
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15466: \(b= a_{1} + (n-1)d\),\(n=\frac{b-a_{1}}{d}+1\), если b- является членом прогрессии \(n=\frac{44-(-7)}{5,1}+1=11\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15467: \(b= a_{1} + (n-1)d\),\(n=\frac{b-a_{1}}{d}+1\), если b- является членом прогрессии \(n=\frac{-0,01-(-0,13)}{0,02}+1=7\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15468: \(a_{n}=2+(n-1)(-0,1) = 2.1-0.1n\) \(a_{n}< 0\) при \(2,1-0.1n< 0\). \(n> > 21\) \(n=22\)
Ответ: 22
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15469: \(a_{n}=16,3-0,4n\) \(a_{n}<0,9\) при \(16,3-0,4n< 0,9\). \(n> 38,5\) \(n=39\)
Ответ: 39
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15470: \(a_{n}=120-10n\) \(a_{n}<15\) при \(120-10n< 15\). \(n> 10,5\) \(n=11\)
Ответ: 11
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15471: \(a_{n}=0,25-0,75n\) \(a_{n}<-16,3\) при \(-0,25-0,75n< -16,3\). \(n> 21,4\) \(n=22\)
Ответ: 22
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15472: \(a_{n} = -12+(n-1)*3=-15+3n\), \(a_{n}> 141\), при \(-15+3n> 141\), \(n> 52\), \(n=53\)
Ответ: 53
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15473: \(a_{n} = 1,8+2,2n\), \(a_{n}> 14,7\), при \(1,8+2,2n> 14,7\), \(n> \frac{129}{22}\), \(n=6\)
Ответ: 6
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15474: \(a_{n} = -10+5,5n\), \(a_{n}> 0\), при \(-10+5,5n> 0\), \(n> \frac{20}{11}\), \(n=2\)
Ответ: 2
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15475: \(a_{n} = 13,8+0,7n\), \(a_{n}> 22,9\), при \(13,8+0,7n> 22,9\), \(n>13\), \(n=14\)
Ответ: 14
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15476: \(\left\{\begin{matrix} a_{1}+a_{5}=14 & \\ a_{2}a_{4} = 45& \end{matrix}\right. \left\{\begin{matrix} a_{1}+a_{1}+4d=14 & \\ (a_{1}+d)(a_{1}+3d) = 45& \end{matrix}\right. \left\{\begin{matrix} a_{1}+2d=7 & \\ (7-d)(7+d) = 45& \end{matrix}\right.\left\{\begin{matrix} a_{1}=7-2d & \\ 49-d^{2} = 45& \end{matrix}\right.\left\{\begin{matrix} a_{1}=7-2d & \\ d^{2} = 4& \end{matrix}\right.\) так как \(d=2\) Тогда \(a_{6} = a_{1}+5d=3+10=13\)
Ответ: 13
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15477: \(\left\{\begin{matrix} a_{2}+a_{5}=18 & \\ a_{2}*a_{3} = 21& \end{matrix}\right. \left\{\begin{matrix} a_{2}+a_{2}+3d=17 & \\ a_{2}(a_{2}+d) = 21& \end{matrix}\right. \left\{\begin{matrix} 2a_{1}+3d=17 & \\ a_{2}(a_{2}+d) = 21& \end{matrix}\right. так как \(a_{2}\) - натуральное число, то \(a_{2}=3\) и \(d=4\) Тогда \(a_{1} = -1\) и прогрессия: -1,3,7,11,15…
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15478: \(\left\{\begin{matrix} a_{1}+a_{2}+a_{3}=-21 & \\ a_{2}+a_{3}+a_{4}=-6&,\end{matrix}\right\). , и \(a_{1}\),\(a_{2}\),\(a_{3}\),\(a_{4}\)-арифмитическая прогрессия, так что \(\left\{\begin{matrix} a_{1}+a_{2}+d+a_{1}+2d=-21 & \\ a_{1}+d+a_{1}+2d+a_{1}+3d = -6& \end{matrix}\right. \left\{\begin{matrix} a_{1}+d=-7 & \\ a_{1}2d = -2& \end{matrix}\right. \) \(a_{1}=-12\) и \(d=5\) эта числа: -12,-7,-2,3,…
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Сумма п первых членов арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15479: \(S_{n} = \frac{a_{1}+a_{n}}{2}*n\) ,\(S_{30} = \frac{-1+86}{2}*30=1275\)
Ответ: 1275
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Сумма п первых членов арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге: Мордкович
Решение №15480: \(S_{n} = \frac{a_{1}+a_{n}}{2}*n\), \(S_{20} = \frac{41-16}{2}*20=250\)
Ответ: NaN