Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15421: \(a_{n} = n-0,5\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15422: \(a_{n} = -2n+9\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15423: \(a_{n} = -\frac{n}{7} - \frac{6}{7}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15424: \(a_{n} = -6n +10\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15425: \(a_{n} = -0.2n -0.5\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15426: \(a_{n} = 5n -12\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15427: \(a_{n} = \sqrt{5}n-3\sqrt{5}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15428: \(a_{6} = a_{1} + 5d = 4+5*3 = 19\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15429: \(a_{15} = a_{1} + 14d = -15+14(-5) = -85\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15430: \(a_{17} = a_{1} + 16d = -12+16*2 = 20\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15431: \(a_{9} = a_{1} + 8d = 101+8*\frac{1}{2} = 105\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15432: \(a_{5} =a_{1} +4d\), \(d = \frac{a_{5}-a_{1}}{4} = \frac{40-12}{4} = 7\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15433: \(a_{16} =a_{6} + 10d\), \(d = \frac{a_{16}-a_{6}}{10} = \frac{30-(-30)}{10} = 6\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15434: \(a_{11} =a_{1} + 10d\), \(d = \frac{a_{11}-a_{1}}{10} = \frac{-28-(-8)}{10} = -2\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15435: \(a_{36} =a_{11} + 25d\), \(d = \frac{a_{36}-a_{11}}{25} = \frac{54,6-4,6}{25} = 2\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15436: \(a_{7} = a_{1} + 6d\), \(a_{1}=a_{7} - 6d = 9-6*2 = -3\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15437: \(a_{37} = a_{1} + 36d\), \(a_{1}=a_{37} - 36d = -69-36(-2,5) = 21\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15438: \(a_{26} = a_{1} + 25d\), \(a_{1}=a_{26} - 25d = -71-25(-3) = 4\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №15439: \(a_{14} = a_{1} + 13d\), \(a_{1}=a_{14} - 13d = -6\sqrt{5}-13(-\sqrt{5}) = 7\sqrt{5}\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15440: У данной прогрессии \(a_{1} = 9\) и \(d = 2\), тогда если \(a_{n} = 29\) то \(29 = 9+2(n-1)\) \(29 = 7+2n\) n = 11\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15441: \(a_{1} = 3\) \(d = 4\): \(43 = 3+4(n-1)\Leftrightarrow 43 =4n-1\Leftrightarrow n=11\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15442: \(a_{1} = -1,5\) \(d = 0,5\), так что \(4,5 = a_{1} + 12d\), то есть 4,5 - 13-й член прогрессии
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15443: \(a_{1} = 7,5\) \(d = 3,5\), так что \(43,5 = a_{1} + nd\), то \(n = \frac{43,5-a_{1}}{d} = \frac{36,5}{3,5} = \frac{72}{2}\), так что 43,5 - не является членом прогрессии
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15444: \(41 = -7+12*4 = a_{1} + 12d\), так что 41 - 13-й член данной прогрессии
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15445: \(-33 = -3+5*(-6) = a_{1} + 5d\), так что -33 - 6-й член данной прогрессии
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15446: 23;19;15
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15447: 16;22;28
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15448: \(a_{n} = a_{1} + (n-1)*d = 1+10*2=21\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15449: \(a_{n} = a_{1} + (n-1)*d = -1\frac{1}{2}+20*(-3,75)=-76,5\)
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге: Мордкович
Решение №15450: \(a_{n} = a_{1} + (n-1)*d = \frac{2}{3}+16*\frac{3}{4}=12\frac{2}{3}\)
Ответ: NaN