Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2225: \( D=36-4*8=36-32=4=2^{2} x_{1}=\frac{-6-2}{2}=-\frac{8}{2}=-4 x_{2}=\frac{-6+2}{2}=-\frac{4}{2}=-2 \).
Ответ: x=-4, x=-2
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2233: \( D=26^{2}+4*5*24=676+480=1156=34^{2} x_{1}=\frac{-26-34}{2*5}=-\frac{60}{10}=-6 x_{2}=\frac{-26+34}{10}=\frac{8}{10}=0,8 \).
Ответ: x= -6; x= 0,8
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2235: \( D=25+4*14=25+56=81=9^{2} x_{1}=\frac{5-9}{-2}=\frac{-4}{-2}=2 x_{2}=\frac{5+9}{-2}=\frac{14}{-2}=-7 \).
Ответ: x=-7; x=2
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2236: \( D=4+4*3*5=4+60=64=8^{2} x_{1}=\frac{2-8}{-2*3}=\frac{-6}{-6}=1 x_{2}=\frac{2+8}{-6}=\frac{10}{-6}=-\frac{5}{3}=-1\frac{2}{3} \).
Ответ: x=-1\frac{2}{3}; x=1
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2237: \( D=26^{2}-4*(-1)*(-25)=676-100=576=24^{2} x_{1}=\frac{-26-24}{-2}=\frac{-50}{-2}=25 x_{2}=\frac{-26+24}{-2}=\frac{-2}{-2}=1 \).
Ответ: x=1; x=25
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2251: \( 0,6х^{2} + 0,8х - 7,8 = 0 | *10 6x^{2}+8x-78=0 D=64+4*6*78=64+1872=1936=44^{2} x_{1}=\frac{-8-44}{2*6}=\frac{-52}{12}=-\frac{13}{3}=-4\frac{1}{3} x_{2}=\frac{-8+44}{12}=\frac{36}{12}=3\).
Ответ: x=-4 \frac{1}{3}, x=3
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2252: \(\frac{1}{4} х^{2} - х + 1 = 0 | * 4 x^{2}-4x+4=0 D=16-4*4=16-16=0 x=\frac{4}{2}=2 \).
Ответ: x=2
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2257: \( х^{2} + 3х - \frac{3}{2} = 0 | * 2 2x^{2}+6x-3=0 D=36+4*2*3=32+24=60=\sqrt{4*15}=2\sqrt{15} x_{1,2}=\frac{-6\pm \sqrt{15}}{2*2}=\frac{-2(3\pm \sqrt{15})}{2*2}=\frac{-3\pm \sqrt{15}}{2}\).
Ответ: x=\frac{-3\pm \sqrt{15}}{2}
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2259: \( 12x^{2}+6x-5x-1=0 12x^{2}+x-1=0 D=1+4*12=1+48=49=7^{2} x_{1}=\frac{-1-7}{2*12}=-\frac{8}{24}=-\frac{1}{3} x_{2}=\frac{-1+7}{24}=\frac{6}{24}=\frac{1}{4} \).
Ответ: x=-\frac{1}{3}; x=\frac{1}{4}
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2264: \( 3x^{2}+9x-x-3+1=x+6x^{2} 3x^{2}+8x-2-x-6x^{2}=0 -3x^{2}+7x-2=0 |* (-1) 3x^{2}-7x+2=0 D=49-4*3*2=49-24=25=5^{2} x_{1}=\frac{7-5}{6}=\frac{2}{6}=\frac{1}{3}; x_{2}=\frac{7+5}{6}=\frac{12}{6}=2 \).
Ответ: \frac{1}{3}, x=2
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2266: \( 2x^{2}-x+8x-4=3x^{2}+11x 2x^{2}+7x-4-3x^{2}-11x=0 -x^{2}-4x-4=0 | *(-1) x^{2}+4x+4=0 D=16-4*4=16-16=0 x=-\frac{4}{2}=-2 \).
Ответ: x=-2
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2267: \( D=(-p)^{2}-4*9=p^{2}-36 p^{2}-36=0 p^{2}=36 p=\pm 6 \).
Ответ: При p=-6 или p=6
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2269: \( D=p^{2}-4*16=p^{2}-64 p^{2}-4*16=p^{2}-64 p^{2}-64=0 p^{2}=64 p=\pm 8 \).
Ответ: При p=-8 или p=8
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2270: \( D=(-2p)^{2}-4*3p=4p^{2}-12p 4p^{2}-12p=0 4p(p-3)=0 p=0, p-3=0 p=3 \).
Ответ: При p=-0 или p=3
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2272: \( Пусть \( x \) - натуральное число, а его квадрат, то есть \( x^{2} \) на 56 больше \( x \). Найдем это число. x^{2}-x=56 x^{2}-x-56=0 D=1+4*56=1+224=225=15^{2} x_{1}=\frac{1-15}{2}=-\frac{14}{2}=-7\) - не подходит. \( x_{2}=\frac{1+15}{2}=\frac{16}{2}=8\).
Ответ: 8
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2273: Пусть одна сторона прямоугольника равна \( \) см, а другая \( a+5 \) см. Составим уравнение: \( a(a+5)=84 a^{2}+5a-84=0 D=25+4*84=25+336=361=19^{2} a_{1}=\frac{-5-19}{2}=-\frac{24}{2}=-12\) - не подходит; \( a_{2}=\frac{-5+19}{2}=\frac{14}{2}=7 \) (см) - одна сторона прямоугольника. \( a+5=7+5=12\) (см) - вторая сторона прямоугольника..
Ответ: 7 см и 12 см.
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2274: Пусть одно число \( n \), а второе число\( n+1 \). Составим уравнение: \( x(x+2) =120 x^{2}+2x-120=0 D=4+4*120=4+480=484=22^{2} x_{1}=\frac{-2-22}{2}=-\frac{24}{2}=-12; x_{2}=\frac{-2+22}{2}=\frac{20}{2}=10\) - первое число. Если \( x=-12 \), то второе число равно \(-14+2=-10\) Если \( x=10 \), то второе число равно \( 10+2=12 \).
Ответ: 10 и 12 или -12 и -10.
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2276: Пусть изначально стороны листа картона были равны \( a \) см. После того, как от него отрезали полоску, ширина стала равна \( x-3 \). Составим уравнение: \( x(x-3)=70 x^{2}-3x-70=0 D=9+4*70=9+280=289=17^{2} x_{1}=\frac{3-17}{2}=-\frac{14}{2}=-7\) - не подходит. \( x_{2}=\frac{3+17}{2}=\frac{20}{2}=10 \) (см) - первоначальные размеры листа картона.
Ответ: 10 см.
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2277: Пусть первоначальное число равно \( n \), а второе число равно \( n+1 \). Составим уравнение: \( n(n+1)-271=n+(n+1) n^{2}+n-271-n-n-1=0 n^{2}-n-272=0 D=1+4*272=1+1088=1089=33^{2} x_{1}=\frac{1-33}{2}=-\frac{32}{2}=-16 \) - не подходит; \( x_{2}=\frac{1+33}{2}=\frac{34}{2}=17 \) - первое число. \( n+1=17+1=18 \) - второе число.
Ответ: 17 и 18.
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2285: Пусть на \( x \) % педполагалось снижать цену миксера, тогда за первый месяц стоимость миксера станет \( 2500-2500*\frac{x}{100}=2500-25x \). За второй месяц \( x+10 \) %- снижение стоимости миксера. Составим уравнение: \( 2500-25x-(2500-25x)*(\frac{x+10}{100})=1800 | * 100 100(2500-25x)-(2500-25x)(x+10)=180000 250000-2500x-2500x-25000+25x^{2}+250x-180000=0 25x^{2}-4750x+45000=0 | : 25 x^{2}-190x+1800=0 D=36100-4*1800=36100-7200=28900=140^{2} x_{1}=\frac{190-170}{2}=\frac{20}{2}=10 % \) - предполагалось снижать стоимость миксера; \( x_{2}=\frac{190+170}{2}=\frac{360}{2}=180 \) - не подходит.
Ответ: 0.1
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2287: \( 9x^{2}+6x+1-7x^{2}-5x-4=0 2x^{2}+x-3=0 D=1+4*2*3=1+24=25=5^{2} x_{1}=\frac{-1-5}{4}=-\frac{6}{4}=-1,5; x_{2}=\frac{-1+5}{4}=\frac{4}{4}=1 \).
Ответ: x=-1,5; x=1
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2291: \( D=\frac{-4\sqrt{3}-4\sqrt{2}}{2*4}=\frac{4*(-\sqrt{3}-\sqrt{2})}{2*4}=\frac{-\sqrt{3}-\sqrt{2}}{2} x_{1}=\frac{-4\sqrt{3}-4\sqrt{2}}{2*4}=\frac{4*(-\sqrt{3}-\sqrt{2})}{2*4}=\frac{-\sqrt{3}-\sqrt{2}}{2} x_{2}=\frac{-4\sqrt{3}+4\sqrt{2}}{2*4}=\frac{4*(-\sqrt{3}+\sqrt{2})}{2*4}=\frac{-\sqrt{3}+\sqrt{2}}{2} \).
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2295: \( \frac{x^{2}-3}{2}-6x=5 | * 2 x^{2}-3-12x=10 x^{2}-12x-3-10=0 x^{2}-12x-13=0 D=144+4*13=144+52=196=14^{2} x_{1}=\frac{12-14}{2}=-\frac{2}{2}=-1 x_{2}=\frac{12+14}{2}=\frac{26}{2}=13 \).
Ответ: x=-1; x=13
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2300: \( x(x-1)=210 x^{2}-x-210=0 D=1+4*210=1+840=840=29^{2} x_{1}=\frac{1-29}{2}=-\frac{28}{2}=-14\) - не подходит; \( x_{2}=\frac{1+29}{2}=\frac{30}{2}=15 \) (учащихся).
Ответ: 15 учащихся.
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2303: Пусть первое повышение было \( x(x=\frac{x%}{100} \), значит зарплата стала \( 1+x \); а второе повышение было \( 2x \), значит зарплата стала \( 2x(1+x)+(1+x) \), где \( 2x(1+x) \) - проценты прибавленные к зарплате \( 1+x \). Все вместе это 32% =1,32. Составим уравнение: \( 2x(1+x)+1+x=1,32 2x+2x^{2}+1+x-1,32=0 2x^{2}+3x-0,32=0 D=9+4*2*0,32=9+2,56=11,56=3,4^{2} x_{1}=\frac{-3-3,4}{4}=-\frac{6,4}{4}< 0\) - не подходит; \( x_{2}=\frac{-3+3,4}{4}=\frac{0,4}{4}=0,1\) Значит, первое повышение было на: \(0,1*100=10%\)
Ответ: 0.1
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2314: При \( x> 0 x^{2}-7x+12=0 D=49-4*12=49-48=1 x_{1}=\frac{7-1}{2}=\frac{6}{2}=3; x_{2}=\frac{7+1}{2}=\frac{8}{2}=4\) При \( x< 0 -x^{2}-7x+12=0 D=49+4*12=49+48=97=\sqrt{97} x_{1}=\frac{7-\sqrt{97}}{-2}=\frac{-7-\sqrt{97}}{2}; x_{2}=\frac{1+\sqrt{97}}{-2}=\frac{-7+\sqrt{97}}{2} \) - не подходит.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2315: При \( x> 0 x^{2}+5x-6=0 D=25+4*6=49=7^{2} x_{1}=\frac{-5-7}{2}=-\frac{12}{2}=-6 \) - не подходит. \( x_{2}=\frac{-5+7}{2}=\frac{2}{2}=1 \) При \( x< 0 x^{2}-5x-6=0 D=25+4*6=49=7^{2} x_{1}=\frac{5-7}{2}=-\frac{2}{2}=-1 x_{2}=\frac{5+7}{2}=\frac{12}{2}=6 \) - не подходит.
Ответ: NaN
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2317: \(3x+\frac{4}{x}=7 | * x \), ОДЗ \( x\neq 0 3x^{2}+4-7x=0 3x^{2}+7x+4=0 D=49-4*3*4=49-48=1 x_{1}=\frac{7-1}{2*3}=\frac{6}{6}=1 x_{2}=\frac{7+1}{6}=\frac{8}{6}=\frac{4}{3}=1\frac{1}{3} \)
Ответ: x=1; x=1\frac{1}{3}
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2318: \( \frac{2x^{2}-10}{x+5}-4=0 | * x+5\), ОДЗ \( x+5\neq 0, x\neq -5 2x^{2}-10-4(x+5)=0 2x^{2}-10-4x-20=0 2x^{2}-4x-30=0 | : 2 x^{2}+2x-15=0 D=4+4*15=4+60=64=8^{2} x_{1}=\frac{2-8}{2}=-\frac{6}{2}=-3 x_{2}=\frac{2+8}{2}=\frac{10}{2}=5 \).
Ответ: x=-3; x=5
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге: Мордкович
Решение №2320: \( \frac{x^{2}+3}{x^{2}+1}=2 | * x^{2}+1 x^{2}+3-2(x^{2}+1=0 x^{2}+3-2x^{2}-2=0 x^{2}+3-2x^{2}-2=0 -x^{2}+1=0 | *(-1) x^{2}-1=0 x^{2}=1 x=\pm 1 \).
Ответ: x=\pm 1