Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Оптика, Элементы волновой оптики, интерференция,

Задача в следующих классах: 10 класс 11 класс

Сложность задачи : 2

Задача встречается в следующей книге: Генденштейн, Кошкина Физика задачник базовый и углубленный уровни, 11 класс

Два очень тонких полупрозрачных зеркала расположены параллельно друг другу. На них перпендикулярно плоскости зеркал падает световая волна длиной 600 нм. При каком минимальном расстоянии между зеркалами будет наблюдаться интерференционный минимум для проходящих световых волн? Ответ дать в нанометрах.

Решение №26199: 150 нм.

Ответ: 150

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Оптика, Элементы волновой оптики, интерференция,

Задача в следующих классах: 10 класс 11 класс

Сложность задачи : 2

Задача встречается в следующей книге: Генденштейн, Кошкина Физика задачник базовый и углубленный уровни, 11 класс

Два очень тонких полупрозрачных зеркала расположены параллельно друг другу. На них перпендикулярно плоскости зеркал падает световая волна. Длина волны 600 нм. При каком минимальном расстоянии между зеркалами будет наблюдаться интерференционный максимум для отражённого света? Ответ дать в нанометрах.

Решение №26200: 300 нм.

Ответ: 300

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Оптика, Элементы волновой оптики, интерференция,

Задача в следующих классах: 10 класс 11 класс

Сложность задачи : 2

Задача встречается в следующей книге: Генденштейн, Кошкина Физика задачник базовый и углубленный уровни, 11 класс

Чтобы уменьшить коэффициент отражения света от поверхности стекла, на него наносят тонкую прозрачную плёнку с показателем преломления \(n_{п}\) меньшим, чем у стекла. Найдите наименьшую необходимую для погашения отражённого света толщину плёнки, приняв, что \(n_{п}=\sqrt{n}\), где \(n\) — показатель преломления стекла. Длина волны света 500 нм, свет падает перпендикулярно поверхности стекла. Ответ дать в микрометрах.

Решение №26201: 0,1 мкм.

Ответ: 0.1

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Оптика, Элементы волновой оптики, интерференция,

Задача в следующих классах: 10 класс 11 класс

Сложность задачи : 2

Задача встречается в следующей книге: Генденштейн, Кошкина Физика задачник базовый и углубленный уровни, 11 класс

Между краями двух хорошо отшлифованных тонких плоских стеклянных пластинок помещена тонкая проволочка диаметром 0,085 мм. Противоположные концы пластинок плотно прижаты друг к другу (рисунок ниже). Расстояние от проволочки до линии соприкосновения пластинок равно 25 см. На верхнюю пластинку перпендикулярно к её поверхности падает монохроматический пучок света с длиной волны 700 нм. Определите количество наблюдаемых интерференционных полос на 1 см длины клина.

Решение №26202: 10.

Ответ: 10

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Оптика, Элементы волновой оптики, интерференция,

Задача в следующих классах: 10 класс 11 класс

Сложность задачи : 2

Задача встречается в следующей книге: Генденштейн, Кошкина Физика задачник базовый и углубленный уровни, 11 класс

Две когерентные световые волны в результате интерференции могут взаимно погаситься в некоторой области. Куда «исчезает» энергия этих волн?

Решение №26203: Энергия волн при интерференции перераспределяется в пространстве. У к а з а н и е. Если в некоторой области волны гасят друг друга, то в «соседней» области они усиливают друг друга, в результате чего амплитуда результирующей волны в этой области удваивается.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Оптика, Элементы волновой оптики, интерференция,

Задача в следующих классах: 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге: Генденштейн, Кошкина Физика задачник базовый и углубленный уровни, 11 класс

Почему интерференционная окраска наблюдается только у достаточно тонких плёнок?

Решение №26204: Во-первых, если толщина плёнки существенно превышает длину цуга волны падающего света (для солнечного света это величина порядка 1 мкм), то отражённые от двух поверхностей плёнки световые волны не являются когерентными, и поэтому интерференционная картина не наблюдается. Во-вторых, при большой толщине плёнки густота интерференционных максимумов и минимумов так велика, что мы перестаём их различать. При этом происходит также наложение интерференционных максимумов световых волн различной длины.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Оптика, Элементы волновой оптики, интерференция,

Задача в следующих классах: 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге: Генденштейн, Кошкина Физика задачник базовый и углубленный уровни, 11 класс

Цвета тонких плёнок (например, плёнки бензина на воде) часто называют «радужными». Но действительно ли эти цвета являются такими же чистыми спектральными цветами, как цвета радуги?

Решение №26205: Видимые цвета тонких плёнок не являются спектрально чистыми. У к а з а н и е. Как известно, белый свет представляет собой «смесь» монохроматических световых волн. Вследствие интерференции световых волн, отражённых от двух поверхностей тонкой плёнки, одни монохроматические волны усиливаются, а другие ослабляются. Именно по этой причине отражённый свет и приобретает окраску. Однако отражённый свет остаётся всё же «смесью» различных монохроматических волн.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Оптика, Элементы волновой оптики, интерференция,

Задача в следующих классах: 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге: Генденштейн, Кошкина Физика задачник базовый и углубленный уровни, 11 класс

Мыльная плёнка — это тонкий слой воды, на поверхности которой находится слой молекул мыла, не влияющий на оптические свойства плёнки. Мыльная плёнка натянута на квадратную рамку, две стороны которой расположены горизонтально, а две другие — вертикально. Под действием силы тяжести плёнка приняла форму клина (рисунок ниже), толщина которого внизу оказалась 5 мкм больше, чем вверху. При освещении квадрата параллельным пучком света лазера с длиной волны 666 нм (в воздухе), падающим перпендикулярно плёнке, часть света отражается от неё, образуя интерференционную картину, состоящую из горизонтальных полос. Сколько полос наблюдается на плёнке?

Решение №26206: 20.

Ответ: 20

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Оптика, Элементы волновой оптики, интерференция,

Задача в следующих классах: 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге: Генденштейн, Кошкина Физика задачник базовый и углубленный уровни, 11 класс

Два когерентных источника монохроматического света с длиной волны \(\lambda =600\) нм находятся на расстоянии \(A_{1}A_{2}=1\) мм друг от друга и на одинаковом расстоянии \(L=3\) м от экрана. Каково расстояние \(x\) между ближайшими интерференционными максимумами на экране? Обязательно ли будет наблюдаться максимум освещённости в точке \(O\), равноудалённой от обоих источников? Ответ дать в миллиметрах.

Решение №26207: \(x=1,8\) мм; не обязательно. У к а з а н и е. Когерентность источников не исключает возможности постоянного сдвига фаз между испускаемыми ими волнами. Поэтому в равноудалённой от источников точке \(O\) (рисунок ниже) необязательно будет максимум освещённости: например, в случае противофазных источников в точке \(O\) будет минимум освещённости. Для нахождения \(x\) предположим, что сдвиг фаз между источниками отсутствует (в противном случае произойдёт одинаковое смещение тёмных и светлых полос без изменения их ширины). Тогда в точке \(O\) будет максимум освещённости, поскольку разность хода волн равна нулю, а в точке \(M\) следующего максимума разность хода волн равна длине волны \(\lambda \). Это условие приводит к уравнению \(\sqrt{L^{2}+(x+s)^{2}}-\sqrt{L^{2}+(x-s)^{2}}=\lambda \), где \(s=\frac{A_{1}A_{2}}{2}\). Воспользовавшись малостью \(x\) и \(s\) по сравнению с \(L\), можно упростить последнее уравнение. Домножив и разделив его левую часть на «сопряжённое» выражение \(\sqrt{L^{2}+(x+s)^{2}}+\sqrt{L^{2}+(x-s)^{2}}\), приближённо равное \(2L\), находим: \(x=\frac{\lambda L}{2s}=\frac{\lambda L}{A_{1}A_{2}}=1,8\) мм.

Ответ: 1.8

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Оптика, Элементы волновой оптики, дифракция,

Задача в следующих классах: 10 класс 11 класс

Сложность задачи : 1

Задача встречается в следующей книге: Генденштейн, Кошкина Физика задачник базовый и углубленный уровни, 11 класс

Период дифракционной решётки равен 10 мкм. Сколько щелей решётки приходится на 1 мм?

Решение №26208: 100.

Ответ: 100