Задачи

Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По сложности:

По авторам:

Найдите: \(\lim-{n \to \propto}\left ( \frac{a}{n} \right )^{n}\), где a - произвольное число.

Решение №13789: При a=1 очевидно \(\lim_{n \to \propto}\frac{1}{n^{n}}=0\). При \(0< a< 1\) выполнены неравенства \(0< \left ( \frac{a}{n} \right )^{n}< \left ( \frac{1}{n} \right )^{n}\). Перейдя к пределу в неравенствах и воспользовавшись теоремой о сжатой последовательности, получим \(\lim_{n \to \propto}\left ( \frac{a}{n} \right )^{n}=0\). Если \(a< 0, то \lim_{n \to \propto}\left ( \frac{a}{n^{n}} \right )^{n}=\lim_{n \to \propto}\left ( -1 \right )\left ( \frac{-a}{n^{n}} \right )^{n}=0\) как произведение бесконечно малой последовательности на ограниченную.

Ответ: 0

Найдите\( \lim n \to \propto x_{n}\), воспользовавшись свойствами пределов, связанными с неравенствами и арифметическими действиями с пределами. \(x_{n}=\frac{\left ( -2 \right )^{n}}{\left ( n+2 \right )!} \)

Решение №13791: Докажем, что \(\lim_{n \to \propto} \frac{a^{n}}{n!}=0 при a> 0\). Пусть натуральное число k> 2a, тогда при n> k будет выполнено \(\frac{a^{n}}{n!}=\frac{a}{1}*\frac{a}{2}*...*\frac{a}{n}=\left ( \frac{a}{1}*\frac{a}{2}*...*\frac{a}{k} \right )*\left ( \frac{a}{k+1}*\frac{a}{k+2}*...*\frac{a}{n} \right )< a^{k}\left ( \frac{1}{2} \right )^{n-k}=\left ( 2a \right )^{k}\left ( \frac{1}{2} \right )^{n}\). Так как \(\lim_{n \to \propto} \left ( \frac{1}{2} \right )^{n}=0\), то при достаточно большом n будет выполнено \(\left ( \frac{1}{2} \right )^{n}< \frac{\varepsilon }{\left ( 2a \right )^{k}}\), и следовательно, \(\frac{a^{n}}{n!}< \varepsilon\) , а это значит , что \(\lim_{n \to \propto} \frac{a^{n}}{n!}=0\). Теперь отметим, что выполнено неравенство \(0<\frac{2^{n}}{\left ( n+2 \right )!} . Тогда \lim_{n \to \propto} \frac{2^{n}}{\left ( n+2 \right )!}=0\), а так как произведение бесконечно малой последовательности на ограниченную последовательность есть бесконечно малая последовательность, то \(\lim_{n \to \propto }\frac{\left ( -2 \right )^{n}}{\left ( n+2 \right )!}=\lim_{n \to \propto} \left ( -1 \right )^{n}\frac{2^{n}}{\left ( n+2 \right )!}=0 \)

Ответ: 0

Найдите\( \lim_{n \to \propto} x_{n}\), воспользовавшись свойствами пределов, связанными с неравенствами и арифметическими действиями с пределами. \(x_{n}=\frac{1}{\left ( 0.3 \right )^{n}n!}\)

Пока решения данной задачи,увы,нет...

Ответ: 0

Найдите \(\lim_{n \to \propto} x_{n}\), воспользовавшись свойствами пределов, связанными с неравенствами и арифметическими действиями с пределами. \(x_{n}=\frac{n*3^{n}+1}{n!+1}\)

Решение №13793: \( \lim_{n \to \propto}\frac{n*3^{n}+1}{n!+1}=\lim_{n \to \propto}\frac{\frac{3^{n}}{\left ( n+1 \right )!}+\frac{1}{n!}}{1+\frac{1}{n!}}=0 \)

Ответ: 0

Пусть последовательность задана в виде\( \forall n\in N x_{n+1}=f\left ( x_{n} \right )\), причем f - возрастающая функция. Докажите, что если f - ограниченная функция, то последовательность \( \left \{ x_{n} \right \} \)сходится.

Решение №13796: Если f — ограниченная функция, то \(\left \{ x_{n} \right \}\) — ограниченная последовательность, а в силу заданий а и б ещё и монотонная. Значит, последовательность \(\left \{ x_{n} \right \}\) сходится по теореме Вейерштрасса.

Ответ: NaN

Пусть последовательность задана в виде \(\forall n\in N x_{n+1}=f\left ( x_{n} \right )\), причем f - убывающая функция. Докажите, что последовательность\( \left \{ x_{2n-1} \right \} и \left \{ x_{2n} \right \}\) монотонны, причем одна из них возрастает, а другая убывает.

Решение №13797: Пусть \(x_{3}=f\left ( f\left ( x_{1} \right ) \right ) x_{5}=f\left ( f\left ( x_{3} \right ) \right )\). Если \(x_{1}< x_{3}, то \left \{ x_{2n-1} \right \}\) — возрастающая последовательность по предыдущей задаче, при этом \(x_{2}=f\left ( x_{1} \right ), x_{4}=f\left ( x_{3} \right )\) и так как \(x_{1}< x_{3}\), а f— убывающая функция, то \(x_{2}> x_{4}\), и т. д. Заметим, что здесь возможно единственное расположение точек\( x_{i}\) на оси \(x_{3}\in \left ( x_{1}; x_{2} \right )\).Действительно, \(x_{1} \) располагается слева от \(\left ( x_{2}; x_{3} \right ), x_{1}< x_{2}\). Так как f — убывающая функция, то \(x_{2}=f\left ( x_{1} \right )> f\left ( x_{2} \right )=x_{3}\). В результате последовательность \(\left \{ x_{2n-1} \right \}\) возрастающая и ограничена сверху \(x_{2}\), последовательность \(\left \{ x_{2n} \right \}\) убывающая и ограничена снизу \(x_{3}\). Если же \(x_{1}> x_{3} (x_{1} \)расположена справа от \(( \left ( x_{2}; x_{3} \right ))\), то \(x_{3}\in \left ( x_{2}; x_{1} \right ) \) и тогда последовательность \(\left \{ x_{2n-1} \right \} \)убывающая и ограничена снизу \(x_{2}.\)

Ответ: NaN

Вычислите при каком значении \(x_{1}\) сходится последовательность \(x_{n+1}=x_{n}^{2}+3x_{n}+1 \)

Решение №13798: Пусть \(x_{n+1}=x_{n}^{2}+3x_{n}+1. Тогда \forall n\in N x_{n+1}-x_{n}=x_{n}^{2}-2x_{n}+1=\left ( x_{n}+1 \right )^{2}\geqslant 0\). Таким образом, последовательность \(\left \{ x_{n} \right \}\) возрастающая. Выясним, когда последовательность \(\left \{ x_{n} \right \}\) ограничена. Рассмотрим график \(f\left ( x \right )=x^{2}+3x+1\). Ясно, что при \(x_{1}> -1\) последовательность \(left \{ x_{n} \right \}\) расходится, так как в силу неограниченности функции \(f x_{n+1}=x_{n}^{2}+3x_{n}+1 \) и его можно сделать сколь угодно большим. Аналогично при \(x_{2}< -2\) последовательность \(left \{ x_{n} \right \}\) неограниченная.

Ответ: NaN

Выясните, сходится ли последовательность \(\left \{ x_{n} \right \}\) и найдите предел сходящейся последовательности \(x_{1}=1, x_{n+1}=\frac{1}{1+x_{n}}\)

Решение №13800: Заметим, что \(\forall n\in N x_{n}> 0\). Тогда используем то, что \(f\left ( x \right )=\frac{1}{1+x}\) убывает на\( \left [ 0; +\propto \right )\). Найдем несколько первых членов последовательности: \(x_{1}=1; x_{2}=\frac{1}{2}; x_{3}=\frac{2}{3}; x_{4}=\frac{3}{5}; x_{5}=\frac{5}{8}\). Нетрудно видеть, что последовательность \(\left \{ x_{2n} \right \}\), членами которой являются числа \(\frac{1}{2}; \frac{3}{5}; ...,\) возрастающая, а последовательность \(\left \{ x_{2n-1} \right \}\), членами которой являются числа 1; \(\frac{2}{3}; \frac{5}{8}; ... ,\) убывающая. Кроме того \(\forall n\in N x_{2n}< 1, x_{2n-1}> 0\). Тогда существуют \(\lim_{n \to \propto} x_{2n} и \lim_{n \to \propto} x_{2n-1}\). Покажем, что они равны: \(x_{n+1}=\frac{1}{1+x_{n}}=\frac{1}{1+\frac{1}{1+x_{n-1}}}=\frac{1+x_{n-1}}{2+x_{n-1}}\). Эта формула связывает соседние члены в обеих последовательностях. Если в ней перейти к пределу, то получим \(A=\frac{1+A}{2+A},откуда A=\frac{\sqrt{5}-1}{2} (так как A> 0)\) Таким образом, \(\lim_{n \to \propto} x_{2n} \lim_{n \to \propto} x_{2n-1}=\lim_{n \to \propto} x_{n}=\frac{\sqrt{5}-1}{2} \)

Ответ: NaN

Выясните, сходится ли последовательность \(\left \{ x_{n} \right \}\) и найдите предел сходящейся последовательности \(0< x_{1}\leqslant \frac{\sqrt{5}-1}{2}, x_{n+1}=\sqrt{1-x_{n}} \)

Решение №13802: Пусть \(\tau =\frac{\sqrt{5}-1}{2}\). \(\tau \) - это предел в предположений, что он существует. Заметим, что \(x_{2}=\sqrt{1-x_{1}}> \sqrt{1-\tau }=\tau > x_{1}, x_{3}=\sqrt{1-x_{2}}> \sqrt{1-\tau }=\tau \). Выясним, верно ли, что \(x_{3}> x_{1}\), т.е. верно, что \(\sqrt{1-x_{2}}=\sqrt{1-\sqrt{1-x_{1}}}> x_{1}. 1-\sqrt{1-x_{1}}> x_{1}^{2}; \sqrt{1-x_{1}}< \left ( 1+x_{1} \right )\left ( 1-x_{1} \right ); \sqrt{1-x_{1}}\left ( 1+x_{1} \right )> 1\). Последнее неравенство верно, так как \(\sqrt{1-x_{2}}\leqslant 1-x_{1}\Leftrightarrow \sqrt{1-x_{1}}\geqslant 1\Leftarrow 0< x_{1}\leqslant \frac{\sqrt{5}-1}{2}\). Таким образом, \(x_{1}\notin \left ( x_{2}; x_{3} \right )\). Итак, последовательность \(\left \{ x_{2n-1} \right \}\) возрастающая и ограниченная сверху \(\tau\), а последовательность \(\left \{ x_{2n} \right \}\) убывающая и ограниченная снизу \tau и окончательно \(\lim_{n \to \propto} x_{2n-1}=\lim_{n \to \propto} x_{2n}=\lim_{n \to \propto} x_{n}=\tau .\)

Ответ: NaN

Исследуйте на сходимость последовательность \(x_{1}=-\frac{7}{13}, x_{n+1}=\frac{1+x_{n}}{2x_{n}}\)

Решение №13804: \( x_{n+1}=\frac{1}{2}\left ( 1+\frac{1}{x_{n}} \right ); \lim_{n \to \propto} x_{n}=1 \)

Ответ: NaN

Исследуйте на сходимость последовательность\( x_{1}> 0, x_{n+1}=\frac{a}{x_{n}}+b, a> 0, b> 0, n\in N\)

Решение №13806: \( x=\frac{a}{x}+b\Leftrightarrow x=\frac{b+\sqrt{b^{2}+4a}}{2}, \lim_{ n \to \propto} x_{n}=\frac{b+\sqrt{b^{2}+4a}}{2} \)

Ответ: NaN

Исследуйте на сходимость последовательность\( x_{1}=a, x_{n+1}=\cos x_{n}\)

Решение №13807: Если \(x_{1}=a\), то \(x_{2}=\cos a, x_{3}=\cos \left ( \cos a \right )\),так как \(-1\leqslant \cos a\leqslant 1, x_{3}\in \left ( 0; 1 \right )\). Более того, начиная с n = 3, все члены последовательности \(\left \{ x_{n} \right \}\) принадлежат интервалу \(\left ( 0; 1 \right )\), где косинус убывает. Таким образом, последовательность удовлетворяет , а тогда последовательности \(\left \{ x_{2n-1} \right \} и \left \{ x_{2n} \right \}\) монотонны и ограниченны, т. е. имеют пределы. Осталось показать, что эти пределы равны. Заметим, что \(\left \{ x_{2n-1} \right \} =\cos \left ( \cos x_{2n-1} \right ) x_{2n+2}=\cos \left ( \cos x_{2n} \right )\). Переходя к пределу в обеих частях равенства , получаем, что оба предела являются корнями уравнения \(x=\cos \left ( \cos x \right )\). Покажем, что уравнение \(x=\cos \left ( \cos x \right )\) имеет один корень. Пусть этих корней два: \(x_{1}\neq x_{2}\). Тогда\(\left | x_{1}-x_{2} \right |=2\left | \sin \frac{\cos x_{1}+\cos x_{2}}{2} \right |*\left | \sin \frac{\cos x_{2}-\cos x_{1}}{2} \right |\leqslant 2\left | \frac{\left ( \cos x_{2} -\cos x_{1}\right )}{2} \right |=2\left | \sin \frac{x_{1}-x_{2}}{2} \right |*\left | \sin \frac{x_{1}+x_{2}}{2} \right |\leqslant x_{1}-x_{2}\). Противоречия можно избежать, только если вместо знаков неравенства всюду стоят знаки равенства, что возможно лишь при \(\left | x_{1}+x_{2} \right |=0\) (использовано неравенство \(\left | \sin x \right |\leqslant \left | x \right |\), верное при всех значениях x и обращающееся в равенство при x = 0, и то, что \(\left | \sin x \right |\leqslant 1.\)

Ответ: NaN

Пусть \(0< x_{1}< 1, \forall n\in N x_{n+1}=x_{n}\left ( 2-x_{n} \right )\). Исследуйте последовательность \(\left \{ x_{n} \right \}\) на сходимость, если \(x_{1}\notin \left ( 0; 1 \right ) \)

Решение №13809: \( x_{1}\notin \left ( 0;1 \right )\), например \(x_{1}\in \left ( 1; 2 \right )\). Тогда снова \(\left \{ x_{n} \right \}\) сходится и \(\lim_{n \to \propto} x_{n}=1\). Если \(x_{1}< 0\), то последовательность \(\left \{ x_{n} \right \}\) убывающая и не ограничена снизу и \(\lim_{n \to \propto} x_{n}=-\propto\) . Если \(x_{1}> 2\), то всё сводится к случаю \(x_{1}< 0\) Вообще говоря, можно заметить, что если существует \(\lim_{n \to \propto} x_{n}=A, A=0\) или A=1, но при \(x_{1}> 2 A\neq 0 A\neq 1.\)

Ответ: NaN

Докажите, что последовательность имеет предел, больший\( \frac{1}{2}\) и меньший 1: \(a_{n}=\frac{1}{n+1}+...+\frac{1}{2n}\)

Решение №13812: Заметим, что последовательность отличается от последовательности из задания а на \(\frac{1}{n} \) , значит, имеет тот же предел. При этом, так как \(a_{n+1}-a_{n}=\frac{1}{2n+1}+\frac{1}{2n+2}-\frac{1}{n+1}< \frac{1}{2n+2}+\frac{1}{2n+2}-\frac{1}{n+1}=0\) последовательность возрастает. Её предел больше \(a_{2}=\frac{1}{12}> \frac{1}{2} . \)

Ответ: NaN

Пусть \(x_{1}=a, 0< a\leq 2, x_{n+1}=\sqrt{2-\sqrt{4-x_{n}^{2}}}, n\in N\). Докажите, что последовательность \(\left \{ x_{n} \right \} \)сходится

Решение №13813: Подстановка \(x_{n}=2\sin a_{n} \) дает \(x_{n+1}=2\sin \frac{a_{n}}{2}\). Поэтому \(x_{n}=2\sin \frac{a_{1}}{2^{n-1}}\). Поскольку \(\lim_{n \to \propto} \frac{a_{1}}{2^{n-1}}=0\), то получаем \(\lim){n \to \propto} x_{n}=0. \)

Ответ: NaN

Последовательность \(\left \{ x_{n} \right \}\) задана формулой\( x_{n}=nx_{n-1}+2, x_{0}=c\). Докажите, что если последовательность\( \left \{ x_{n} \right \}\) сходящаяся, то она стремится к 0.

Решение №13817: Если предел последовательности \(\left \{ x_{n} \right \} \)не равен 0, то\(\lim_{n \to \propto} \left ( nx_{n} +2\right )=\propto\) , в то время как он должен быть равен пределу последовательности\(\left \{ x_{n+1} \right \}\), т. е. числу.

Ответ: NaN

Последовательность \(\left \{ x_{n} \right \} \)задана формулой \(x_{n}=nx_{n-1}+2, x_{0}=c.\) Докажите, что если число c рационально, то эта последовательность не имеет предела.

Решение №13818: Пусть \(c=\frac{p}{q} \)— несократимая дробь. Тогда все члены последовательности будут иметь знаменатель, не больший q. Заметим, что в последовательности \(\left \{ x_{n} \right \} \) могут совпасть не более двух членов. Последовательность чисел, знаменатели которых не больше q, не может иметь предела, поскольку в любом интервале таких чисел содержится лишь конечное количество. Как будет показано ниже, при рациональном с члены последовательности, начиная с некоторого номера, становятся целыми числами.

Ответ: NaN

Пусть a, b и c - такие положительные числа, что при всех натуральных n существует треугольник со сторонами \(a^{n}, b^{n}, c^{n}\). Докажите, что все такие треугольники являются равнобедренными.

Решение №13820: Рассмотрим наибольшее из чисел. Пусть этим числом является а. Тогда из условия следует, что при всех натуральных n выполнено неравенство \(a^{n}< b^{n}+c^{n}\). Поделим обе части неравенства на \(a^{n}\). Получим неравенство \(\left ( \frac{b}{a} \right )^{n+\left ( \frac{c}{a} \right )^{n}}> 1\), верное при всех натуральных n. Если а не равно ни одному из чисел b и с, то \(\frac{b}{a}< 1, \frac{c}{a}< 1\), а тогда \(\lim_{n \to \propto} \left ( \left ( \frac{b}{a} \right )^{n}+\left ( \frac{c}{a} \right )^{n} \right )=0\), что противоречит неравенству.

Ответ: NaN

Множество нулевых чисел таково, что сумма n-х степеней этих чисел равно 0 при всех нечетных натуральных n. Докажите, что данное множество можно представить как объединение пар противоположных чисел

Решение №13821: Идея решения этой задачи схожа с идеей решения предыдущей. Пусть \(a_{1}, ... , a_{k}\) — данные числа. Пусть \(a_{1}\)— число с максимальным модулем. Из условия получаем равенство \( 1+\left ( \frac{a_{2}}{a_{1}} \right )^{n}+...+\left ( \frac{a_{k}}{a_{1}} \right )^{n}=0\) верное при всех натуральных нечётных n. Если среди записанных в равенстве дробей нет дроби, по модулю равной 1, то, устремляя n к бесконечности, получаем предел левой части равным 1, что противоречит равенству (3). Значит, среди таких дробей есть равные 1 и −1. Сумма дробей, имеющих модуль 1, должна быть равна 0, поскольку остальные дроби «уйдут в 0» при нахождении предела. Значит, среди исходных чисел было поровну равных а1 и −а1. Поскольку сумма всех чисел с наибольшим модулем в нечётных степенях будет равна 0, для оставшихся чисел условие задачи будет выполнено, и то же самое рассуждение можно проделать ещё несколько раз.

Ответ: NaN

Докажите, что \(\forall n\in N: 2< \left ( 1+\frac{1}{n} \right )^{n}< 3 \)

Решение №13823: \( a_{1}= 2\), таким образом, из возрастания последовательности \(\left \{ a_{n} \right \}\) следует, что при n > 1 выполнено \(a_{n} > 2\). Второе неравенство следует из того, что \(a_{n} < е\), поскольку e является пределом возрастающей последовательности, который, как следует из доказательства теоремы Вейерштрасса, является её супремумом. В свою очередь, е < 3.

Ответ: NaN

Докажите, что\( \forall n\in N: \left ( 1+\frac{1}{n} \right )^{n}> ^{1-\frac{1}{n}} \)

Решение №13824: При всех натуральных n выполнено \(\left ( 1+\frac{1}{n} \right )^{n+1}> e\), откуда, возводя обе части неравенства в степень \(\frac{n}{n+1}\) , получаем \(\left ( 1+\frac{1}{n} \right )^{n}> e^{1-\frac{1}{n+1}}\) которое влечёт требуемое неравенство, так как \(1-\frac{1}{n+1}> 1-\frac{1}{n}\)

Ответ: NaN

От противного докажите, что е - иррациональное число.

Решение №13828: Пусть \(e=\frac{p}{q} \), где p и q - натуральные числа. \(\frac{p}{q}=1+1+\frac{1}{2!}+...+\frac{1}{q!}+\frac{a_{q}}{q!q}, 0< a_{q}\leqslant 1\) Умножив обе части этого неравенства на \(q!\) Получаем \(p=2q!+\frac{q!}{2!}+...+1+\frac{a_{q}}{q}\) В левой части этого равенства стоит натуральное число. В правой части равенства все слагаемые, кроме последнего, являются натуральными числами, а последнее слагаемое целым не является. Полученное противоречие доказывает утверждение задачи. Кстати, из доказанного утверждения следует, что в использованном представлении числа e для всех натуральных n выполнено строгое неравенство \(a_{n}< 1\). В противном случае получилось бы, что е — рациональное число. \)

Ответ: NaN

Найдите \( \lim_{n \to \propto}\sin \left ( 2\pi en! \right ) \)

Решение №13829: \( n!e=m_{n}+\frac{a_{n}}{n}, 0< a_{n}\leqslant 1\), где\( m_{n} - некоторое целое число. Тогда \(\sin \left ( 2\pi n!e \right )=\sin \left ( 2\pi m_{n} +\frac{2\pi a_{n}}{n}\right )=\sin \left ( \frac{2\pi a_{n}}{n} \right )\) Очевидно, что \(\lim_{n \to \propto}\sin \left ( \frac{2\pi a_{n}}{n} \right )=0 \)

Ответ: NaN

« 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 »