Задача №38567

№38567

Экзамены с этой задачей:

Предмет и тема: Математика, Геометрия, Планиметрия, треугольники, подобие треугольников, Соотношение в треугольнике,

Задача в следующих классах: 8 класс 9 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В. В. Решение задач повышенной сложности по геометрии. 7–9 классы //М: Просвещение. – 2019.

Условие

Докажите, что отрезки, соединяющие вершины треугольника с точками касания вневписанных окружностей со сторонами, пересекаются в одной точке (точка Нагеля).

Ответ

Утверджение доказано.

Решение № 38551:

Рассмотрите точку \(O\), в которой пересекаются отрезки \(АА_{1}\) и \(ВВ_{1}\), и проведите прямую \(СО\). Эта прямая пересекает отрезок \(АВ\) в некоторой точке \(С_{2}\). Согласно задаче 22.30 выполняется равенство \(\frac{BA_{1}}{CA_{1}} \cdot \frac{CB_{1}}{AB_{1}} \cdot \frac{AC_{2}}{BC_{2}} = 1\). Следовательно, \(AC_{1} : BC_{1} = AC_{2} : ВС_{2}\). Точки \(С_{1}\) и \(С_{2}\) лежат на отрезке \(АВ\), поэтому согласно задаче 22.33 эти точки совпадают, т. е. отрезок \(СС_{1}\) тоже проходит через точку \(О\). Пусть длины касательных, проведённых из вершин \(А\), \(В\) и \(С\) к вневписанной окружности, равны \(х\), \(у\) и \(z\). Тогда \(x - у = AB\), \(y + z = ВС\) и \(x - z = AC\).

Поделиться в социальных сетях

Комментарии (0)