№13830
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 4
Задача встречается в следующей книге:
Условие
От противного докажите, что е - иррациональное число.
Ответ
NaN
Решение № 13828:
Пусть \(e=\frac{p}{q} \), где p и q - натуральные числа. Тогда $$\frac{p}{q}=1+1+\frac{1}{2!}+...+\frac{1}{q!}+\frac{a_{q}}{q!q}, 0< a_{q}\leqslant 1$$ Умножив обе части этого неравенства на \(q!\) Получаем $$p=2q!+\frac{q!}{2!}+...+1+\frac{a_{q}}{q}$$ В левой части этого равенства стоит натуральное число. В правой части равенства все слагаемые, кроме последнего, являются натуральными числами, а последнее слагаемое целым не является. Полученное противоречие доказывает утверждение задачи. Кстати, из доказанного утверждения следует, что в использованном представлении числа e для всех натуральных n выполнено строгое неравенство \(a_{n}< 1\). В противном случае получилось бы, что \(e\) — рациональное число.