Задача №13826

№13826

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 4

Задача встречается в следующей книге:

Условие

Докажите, что\( \forall n\in N: \left ( 1+\frac{1}{n} \right )^{n}> ^{1-\frac{1}{n}} \)

Ответ

NaN

Решение № 13824:

При всех натуральных n выполнено \(\left ( 1+\frac{1}{n} \right )^{n+1}> e\), откуда, возводя обе части неравенства в степень \(\frac{n}{n+1}\) , получаем \(\left ( 1+\frac{1}{n} \right )^{n}> e^{1-\frac{1}{n+1}}\) которое влечёт требуемое неравенство, так как \(1-\frac{1}{n+1}> 1-\frac{1}{n}\)

Поделиться в социальных сетях

Комментарии (0)