№13825
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 4
Задача встречается в следующей книге:
Условие
Докажите, что \(\forall n\in N: 2< \left ( 1+\frac{1}{n} \right )^{n}< 3 \)
Ответ
NaN
Решение № 13823:
\( a_{1}= 2\), таким образом, из возрастания последовательности \(\left \{ a_{n} \right \}\) следует, что при n > 1 выполнено \(a_{n} > 2\). Второе неравенство следует из того, что \(a_{n} < е\), поскольку e является пределом возрастающей последовательности, который, как следует из доказательства теоремы Вейерштрасса, является её супремумом. В свою очередь, е < 3.