Задача №13822

№13822

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 4

Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5

Условие

Пусть a, b и c - такие положительные числа, что при всех натуральных n существует треугольник со сторонами \(a^{n}, b^{n}, c^{n}\). Докажите, что все такие треугольники являются равнобедренными.

Ответ

NaN

Решение № 13820:

Рассмотрим наибольшее из чисел. Пусть этим числом является а. Тогда из условия следует, что при всех натуральных n выполнено неравенство \(a^{n}< b^{n}+c^{n}\). Поделим обе части неравенства на \(a^{n}\). Получим неравенство \(\left ( \frac{b}{a} \right )^{n+\left ( \frac{c}{a} \right )^{n}}> 1\), верное при всех натуральных n. Если а не равно ни одному из чисел b и с, то \(\frac{b}{a}< 1, \frac{c}{a}< 1\), а тогда \(\lim_{n \to \propto} \left ( \left ( \frac{b}{a} \right )^{n}+\left ( \frac{c}{a} \right )^{n} \right )=0\), что противоречит неравенству.

Поделиться в социальных сетях

Комментарии (0)