№13819
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 4
Задача встречается в следующей книге:
Условие
Последовательность \(\left \{ x_{n} \right \}\) задана формулой\( x_{n}=nx_{n-1}+2, x_{0}=c\). Докажите, что если последовательность\( \left \{ x_{n} \right \}\) сходящаяся, то она стремится к 0.
Ответ
NaN
Решение № 13817:
Если предел последовательности \(\left \{ x_{n} \right \} \)не равен 0, то\(\lim_{n \to \propto} \left ( nx_{n} +2\right )=\propto\) , в то время как он должен быть равен пределу последовательности\(\left \{ x_{n+1} \right \}\), т. е. числу.