№13815
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 4
Задача встречается в следующей книге:
Условие
Пусть \(x_{1}=a, 0< a\leq 2, x_{n+1}=\sqrt{2-\sqrt{4-x_{n}^{2}}}, n\in N\). Докажите, что последовательность \(\left \{ x_{n} \right \} \)сходится
Ответ
NaN
Решение № 13813:
Подстановка \(x_{n}=2\sin a_{n} \) дает \(x_{n+1}=2\sin \frac{a_{n}}{2}\). Поэтому \(x_{n}=2\sin \frac{a_{1}}{2^{n-1}}\). Поскольку \(\lim_{n \to \propto} \frac{a_{1}}{2^{n-1}}=0\), то получаем \(\lim){n \to \propto} x_{n}=0. \)