№13795
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 4
Задача встречается в следующей книге:
Условие
Найдите \(\lim_{n \to \propto} x_{n}\), воспользовавшись свойствами пределов, связанными с неравенствами и арифметическими действиями с пределами. \(x_{n}=\frac{n*3^{n}+1}{n!+1}\)
Ответ
0
Решение № 13793:
\( \lim_{n \to \propto}\frac{n*3^{n}+1}{n!+1}=\lim_{n \to \propto}\frac{\frac{3^{n}}{\left ( n+1 \right )!}+\frac{1}{n!}}{1+\frac{1}{n!}}=0 \)