№13790
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 4
Задача встречается в следующей книге:
Условие
Найдите: \(\lim_{n \to \propto}\left ( \frac{2005}{n} \right )^{n}\)
Ответ
0
Решение № 13788:
\( \forall n\geqslant 4010\) верно \(\frac{2005}{n}\leqslant \frac{1}{2}\). Тогда \(0< \left ( \frac{2005}{n} \right )^{n}\leqslant \left ( \frac{1}{2} \right )^{n}\).Перейдем к пределу в неравенствах \(\lim_{n \to \propto}\leqslant \lim_{n \to \propto}\left ( \frac{2005}{n} \right )^{n}\leqslant \lim_{n \to \propto}\left ( \frac{1}{2} \right )^{n}\). Так как крайние пределы равны нулю, то по теореме о сжатой последовательности \(\lim_{n \to \propto}\left ( \frac{2005}{n} \right )^{n}=0. \)