Задача №13773

№13773

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 4

Задача встречается в следующей книге:

Условие

Найдите формулу общего члена для последовательности \(\left \{ a_{n} \right \}\),заданной рекуррентно: \(a_{1}=1, a_{2}=\frac{3}{2}; a_{n}=a_{n-2}+\frac{3}{2^{n-1}} \)

Ответ

a_{n}=\frac{2^{n}-1}{2^{n-1}}

Решение № 13771:

Выпишем первых три члена последовательности: \(a_{1}=1=\frac{2^{1}-1}{2^{0}}, a_{2}=\frac{3}{2}=\frac{2^{2}-1}{2^{1}}, a_{3}=\frac{7}{4}=\frac{2^{3}-1}{2^{2}}\). Теперь можно предположить, что \(a_{n}=\frac{2^{n}-1}{2^{n-1}}\). В правильности этой гипотезы можно убедиться, используя метод математической индукции.

Поделиться в социальных сетях

Комментарии (0)